Parallel Programming Experience with PPM based Gas Dynamics Code

Pei-Hung Lin
University of Minnesota
July 7, 2010

University of Minnesota

Outline

- Parallel programming model
- I/O model
- Machines scaled
- Performance

Parallel Programming Model

- Hybrid programming model
 - MPI + OpenMP
- MPI
 - Process (rank) management
 - Communication across nodes
- OpenMP
 - Thread management
 - Communication within node
 - Hyper-threading improves performance

Parallel Programming Model – IBM Cell

- Three levels of parallelism:
 - within-Cell
 - within-node
 - node-to-node
- Compute-communication overlap
 - **DMA**
 - **DaCS**
 - MPI

Parallel Programming Model – IBM Cell

I/O model

- Aggregate file operations improve performance
- Dedicated MPI I/O ranks perform file ops
 - Doesn't hold back computation
- Load distribution:
 - Problem domain divided into rectangular blocks
 - MPI ranks working on each block are grouped into teams
 - Each team has one I/O server
 - The server reads/writes restart dumps and visualization data

Machines scaled

- Itasca (HP Linux Cluster) 64*128+64 =
 8256 cores
- Cerrillos (IBM cluster) 1024+32 = 1056 cell processors = 8448 cores
- RoadRunner 100, 000 cores (classified)

