
© 2008 Pittsburgh Supercomputing Center 

Performance Engineering of Parallel 
Applications 

Philip Blood, Raghu Reddy 
Pittsburgh Supercomputing Center 



© 2008 Pittsburgh Supercomputing Center 

POINT Project 

•  “High-Productivity Performance Engineering 
(Tools, Methods, Training) for NSF HPC 
Applications” 
–  NSF SDCI, Software Improvement and Support 
–  University of Oregon, University of Tennessee, 

National Center for Supercomputing 
Applications, Pittsburgh Supercomputing Center 

•  POINT project 
–  Petascale Productivity from Open, Integrated 

Tools 
–  http://www.nic.uoregon.edu/point 



© 2008 Pittsburgh Supercomputing Center 

Parallel Performance Technology 

•  PAPI 
–  University of Tennessee, Knoxville 

•  PerfSuite 
–  National Center for Supercomputing Applications 

•  TAU Performance System 
–  University of Oregon 

•  Kojak / Scalasca 
–  Research Centre Juelich 



© 2008 Pittsburgh Supercomputing Center 

•  Choice of algorithm most important consideration 
(serial and parallel) 

•  Measurement may reveal need for new algorithm or 
completely different implementation rather than 
optimization 

•  Focus of this lecture: using tools to assess parallel 
performance  

Choose 
algorithm  Implement Measure Optimize 

Code Development and Optimization Process 



© 2008 Pittsburgh Supercomputing Center 

A little background... 



© 2008 Pittsburgh Supercomputing Center 

Hardware Counters 
•  Counters: set of registers that count processor 

events, like floating point operations, or cycles 
(Opteron has 4 registers, so 4 events can be 
monitored simultaneously) 

•  PAPI: Performance API 
•  Standard API for accessing hardware performance 

counters 
•  Enable mapping of code to underlying architecture 
•  Facilitates compiler optimizations and hand tuning 
•  Seeks to guide compiler improvements and 

architecture development to relieve common 
bottlenecks 



© 2008 Pittsburgh Supercomputing Center 

Features of PAPI 

•  Portable: uses same routines to access 
counters across all architectures 

•  High-level interface 
–  Using predefined standard events the same source 

code can access similar counters across various 
architectures without modification. 

–  papi_avail 
•  Low-level interface 

–  Provides access to all machine specific counters 
(requires source code modification) 

–  Increased efficiency and flexibility 
–  papi_native_avail 

•  Third-party tools 
–  TAU, Perfsuite, IPM 



© 2008 Pittsburgh Supercomputing Center 

Example: High-level interface 

#include <papi.h> 
#define NUM_EVENTS 2 
main() 
{ 
int Events[NUM_EVENTS] = {PAPI_TOT_INS, PAPI_TOT_CYC}; 
long_long values[NUM_EVENTS]; 
/* Start counting events */ 
if (PAPI_start_counters(Events, NUM_EVENTS) != PAPI_OK) 
handle_error(1); 
/* Do some computation here*/ 
/* Read the counters */ 
if (PAPI_read_counters(values, NUM_EVENTS) != PAPI_OK) 
handle_error(1); 
/* Do some computation here */ 
/* Stop counting events */ 
if (PAPI_stop_counters(values, NUM_EVENTS) != PAPI_OK) 
handle_error(1); 
} 



© 2008 Pittsburgh Supercomputing Center 

Measurement Techniques 

•  When is measurement triggered? 
–  Sampling (indirect, external, low overhead) 

•  interrupts, hardware counter overflow, … 
–  Instrumentation (direct, internal, high overhead) 

•  through code modification 

•  How are measurements made? 
–  Profiling 

•  summarizes performance data during execution 
•  per process / thread and organized with respect to 

context 
–  Tracing 

•  trace record with performance data and timestamp 
•  per process / thread 



© 2008 Pittsburgh Supercomputing Center 

inclusive 
duration 

exclusive 
duration 

int foo()  
{ 
       int a; 
       a = a + 1; 

     bar(); 

       a = a + 1; 
       return a; 
} 

Inclusive and Exclusive Profiles 

•  Performance with respect to code regions 
•  Exclusive measurements for region only 
•  Inclusive measurements includes child regions 



© 2008 Pittsburgh Supercomputing Center 

Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 



© 2008 Pittsburgh Supercomputing Center 

Is There a Performance Problem? 

•  My code takes 3 hrs to run each time! 
–  Does that mean it is performing poorly? 

•  HPL on 4K cores can take a couple of hrs 
•  Depends on the work being done 

•  Performance problems 
–  Single core performance problem? 
–  Scalability problem? 



© 2008 Pittsburgh Supercomputing Center 

Detecting Performance Problems 

•  Fraction of Peak 
–  20% peak (overall) is usually decent; After that 

you decide how much effort is it worth 
–  80:20 rule 

•  Scalability 
–  Does run time decrease by 2x when I use 2x 

cores? 
•  Strong scalability 

–  Does run time remain the same when I keep the 
amount of work per core the same? 

•  Weak scalability 



© 2008 Pittsburgh Supercomputing Center 

IPM 

•  Very good tool to get an overall picture 
–  Overall MFLOP 
–  Communication/Computation ratio 

•  Pros 
–  Quick and easy! 
–  Minimal overhead  

•  Cons 
–  Needs manual work to drill down 

http://ipm-hpc.sourceforge.net/ 



© 2008 Pittsburgh Supercomputing Center 

IPM Mechanics 

On Ranger: 

1) module load ipm 

2) just before the ibrun command in the batch script add: 
  setenv LD_PRELOAD $TACC_IPM_LIB/libipm.so 

3) run as normal 

4) to generate webpage 

 module load ipm (if not already) 
 ipm_parse -html <xml_file> 

You should be left with a directory with the html in. Tar it up, move to  
to your local computer and open index.html with your browser. 



© 2008 Pittsburgh Supercomputing Center 

IPM Overhead 

•  Was run with 500 MD steps (time in sec) 
–  base:   MD steps:    5.14637E+01 
–  base-ipm:  MD steps:    5.13576E+01 

•  Overhead is negligible 



© 2008 Pittsburgh Supercomputing Center 

IPM  Results: Overall Picture 



© 2008 Pittsburgh Supercomputing Center 

IPM – Communication (overall) 



© 2008 Pittsburgh Supercomputing Center 

Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 



© 2008 Pittsburgh Supercomputing Center 

Which Functions are Important? 

•  Usually a handful of functions account for 
90% of the execution time 

•  Make sure you are measuring the 
production part of your code  

•  For parallel apps, measure at high core 
counts – insignificant functions become 
significant! 



© 2008 Pittsburgh Supercomputing Center 

PerfSuite 

•  Similar to IPM: great for getting overall picture of 
application performance 

•  Pros 
–  Easy: no need to recompile 
–  Minimal overhead  
–   Provides function-level information 

•  Cons 
–  Not available on all architectures: (x86, x86-64, 

em64t, and ia64) 
http://perfsuite.ncsa.uiuc.edu/ 



© 2008 Pittsburgh Supercomputing Center 

PerfSuite Mechanics 
 # First, be sure to set all paths properly (can do in .cshrc/.profile) 

  % set PSDIR=/opt/perfsuite 
  % source $PSDIR/bin/psenv.csh 

  # Use psrun on your program to generate the data, 
  # then use psprocess to produce an HTML file (default is plain text) 

  % psrun myprog 
  % psprocess --html myprog.12345.xml > myprog.html 

  # Take a look at the results 

  % your-web-browser myprog.html 

  # Second run, but this time profiling instead of counting 

  % psrun –C -c papi_profile_cycles.xml myprog 
  % psprocess -e myprog myprog.67890.xml  

POINT Parallel Performance Evaluation Tools: TAU, PerfSuite, PAPI, Scalasca  



© 2008 Pittsburgh Supercomputing Center 

First case provides hardware counter stats 

Index Description                                   Counter Value 
================================================================= 
1 Conditional branch instructions mispredicted.....    4831072449 
4 Floating point instructions......................   86124489172 
5 Total cycles.....................................  594547754568 
6 Instructions completed........................... 1049339828741 

Statistics 
================================================================= 
Graduated instructions per cycle...................         1.765 
Graduated floating point instructions per cycle....         0.145 
Level 3 cache miss ratio (data)....................         0.957 
Bandwidth used to level 3 cache (MB/s).............       385.087 
% cycles with no instruction issue.................        10.410 
% cycles stalled on memory access..................        43.139 
MFLOPS (cycles)....................................       115.905 
MFLOPS (wallclock).................................       114.441 

POINT Parallel Performance Evaluation Tools: TAU, PerfSuite, PAPI, Scalasca  



© 2008 Pittsburgh Supercomputing Center 

Second case gives contributions of functions 
Function Summary 
-------------------------------------------------------------------------------- 
 Samples   Self %  Total %  Function 

   154346   76.99%   76.99%  pc_jac2d_blk3 
    14506    7.24%   84.23%  cg3_blk 
    10185    5.08%   89.31%  matxvec2d_blk3 
     6937    3.46%   92.77%  __kmp_x86_pause 
     4711    2.35%   95.12%  __kmp_wait_sleep 
     3042    1.52%   96.64%  dot_prod2d_blk3 
     2366    1.18%   97.82%  add_exchange2d_blk3 

Function:File:Line Summary 
-------------------------------------------------------------------------------- 
 Samples   Self %  Total %  Function:File:Line 

    39063   19.49%   19.49%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:20 
    24134   12.04%   31.52%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:19 
    15626    7.79%   39.32%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:21 
    15028    7.50%   46.82%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:33 
    13878    6.92%   53.74%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:24 
    11880    5.93%   59.66%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:31 
     8896    4.44%   64.10%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:22 
     7863    3.92%   68.02%  matxvec2d_blk3:/home/rkufrin/apps/aspcg/matxvec2d_blk3.f:19 
     7145    3.56%   71.59%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:32 

POINT Parallel Performance Evaluation Tools: TAU, PerfSuite, PAPI, Scalasca  



© 2008 Pittsburgh Supercomputing Center 

Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 



© 2008 Pittsburgh Supercomputing Center 

Instrument Key Functions 

•  Instrumentation: insert functions into source 
code to measure performance 

•  Pro: Gives precise information about where 
things happen 

•  Con: High overhead and perturbation of 
application performance 

•  Thus essential to only instrument important 
functions 



© 2008 Pittsburgh Supercomputing Center 

TAU: Tuning and Analysis Utilities 

•  Useful for a more detailed analysis 
–  Routine level 
–  Loop level 
–  Performance counters 
–  Communication performance 

•  A more sophisticated tool 
–  Performance analysis of Fortran, C, C++, Java, 

and Python 
–  Portable: Tested on all major platforms 
–  Steeper learning curve 
http://www.cs.uoregon.edu/research/tau/home.php 



© 2008 Pittsburgh Supercomputing Center 

General Instructions for TAU 

•  Use a TAU Makefile stub (even if you don’t use makefiles for your 
compilation) 

•  Use TAU scripts for compiling 
•  Example (most basic usage): 

•  Excellent “Cheat Sheet”! 
–  Everything you need to know?! (Almost) 

  http://www.psc.edu/general/software/packages/tau/TAU-quickref.pdf 

module load tau 

setenv TAU_MAKEFILE <path>/Makefile.tau-papi-pdt-pgi 

setenv TAU_OPTIONS "-optVerbose -optKeepFiles“ 

tau_f90.sh -o hello hello_mpi.f90 



© 2008 Pittsburgh Supercomputing Center 

Using TAU with Makefiles 

•  Fairly simple to use with well written makefiles: 
setenv TAU_MAKEFILE <path>/Makefile.tau-papi-mpi-pdt-pgi 

setenv TAU_OPTIONS "-optVerbose –optKeepFiles –optPreProcess” 

make FC=tau_f90.sh 
–  run code as normal 
–  run pprof (text) or paraprof (GUI) to get results 
–  paraprof --pack file.ppk (packs all of the profile files 

into one file, easy to copy back to local workstation) 

•  Example scenarios 
–  Typically you can do cut and paste from here: 

 http://www.cs.uoregon.edu/research/tau/docs/scenario/index.html 



© 2008 Pittsburgh Supercomputing Center 

Tiny Routines: High Overhead 

After: 
double precision function scalar(u,v) 
double precision u(3),v(3) 
     call TAU_PROFILE_TIMER(profiler, 'SCALAR […]') 
     call TAU_PROFILE_START(profiler) 
     scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3) 
     call TAU_PROFILE_STOP(profiler) 
return 
     call TAU_PROFILE_STOP(profiler) 
end 

Before: 
double precision function scalar(u,v) 
double precision u(3),v(3) 
      scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3) 
return 
end 



© 2008 Pittsburgh Supercomputing Center 

Reducing Overhead 

Overhead (time in sec): 
MD steps base:  

 5.14637E+01 

MD steps base with TAU
:  3.15578E+02 

Must reduce overhead
 to get meaningful
 results: 

•  In paraprof go to “File”
 and select “Create
 Selective
 Instrumentation File” 



© 2008 Pittsburgh Supercomputing Center 

Selective Instrumentation File 



© 2008 Pittsburgh Supercomputing Center 

Selective Instrumentation File 

•  Files to include/exclude 
•  Routines to include/exclude 
•  Directives for loop instrumentation 
•  Phase definitions 
•  Specify the file in TAU_OPTIONS and 

recompile: 
 setenv TAU_OPTIONS "-optVerbose –optKeepFiles 
  –optPreProcess -optTauSelectFile=select .tau“ 

•  http://www.cs.uoregon.edu/research/tau/docs/newguide/
bk03ch01.html 



© 2008 Pittsburgh Supercomputing Center 

Getting a Call Path with TAU 

•  Why do I need this? 
–  To optimize a routine, you often need to know what is 

above and below it  
–  Helps with defining phases: stages of execution within 

the code that you are interested in 
•  To get callpath info, do the following at runtime: 

setenv TAU_CALLPATH 1 (this enables callpath) 
setenv TAU_CALLPATH_DEPTH 50  (defines depth) 



© 2008 Pittsburgh Supercomputing Center 

Getting Call Path Information 

Right click
 name of node
 and select
 “Show Thread
 Call Graph” 



© 2008 Pittsburgh Supercomputing Center 

Phase Profiling: Isolate regions of code 
execution 

•  Specify a region of the code of interest: e.g. 
the main computational kernel  

•  Use call path to find where in the code that 
region begins and ends 

•  Then put something like this in selective 
instrumentation file: 

static phase name="foo1_bar“ file="foo.c“ line=26 to line=27 

•  Recompile and rerun 



© 2008 Pittsburgh Supercomputing Center 

Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 



© 2008 Pittsburgh Supercomputing Center 

Hardware Counters 

Hardware performance counters available on most modern 
 microprocessors can provide insight into:  

1. Whole program timing 
2. Cache behaviors 
3. Branch behaviors 
4. Memory and resource access patterns 
5. Pipeline stalls 
6. Floating point efficiency 
7. Instructions per cycle 
8. Subroutine resolution 
9. Process or thread attribution 



© 2008 Pittsburgh Supercomputing Center 

Detecting Serial Performance Issues 

•  Identify hardware performance counters of 
interest 
–  papi_avail 
–  papi_native_avail 
–  Run these commands on compute nodes! Login 

nodes will give you an error. 
•  Run TAU (perhaps with phases defined to 

isolate regions of interest) 
•  Specify PAPI hardware counters at run time: 



© 2008 Pittsburgh Supercomputing Center 

Perf of EELEC (peak is 2) 

Go to:  Paraprof
 manager
 Options
->”Show derived
 metrics panel” 



© 2008 Pittsburgh Supercomputing Center 

Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 



© 2008 Pittsburgh Supercomputing Center 

EELEC – After forcing inlining 



© 2008 Pittsburgh Supercomputing Center 

Further Info on Serial Optimization 

•  Tools help you find issues – solving issues 
is application and hardware specific 

•  Good resource on techniques for serial 
optimization: 
“Performance Optimization of Numerically 

Intensive Codes” Stefan Goedecker, Adolfy 
Hoisie, SIAM, 2001. 



© 2008 Pittsburgh Supercomputing Center 

Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 



© 2008 Pittsburgh Supercomputing Center 

Detecting Parallel Performance Issues:  
Load Imbalance   

•  Examine timings of functions in your region 
of interest 

•  To look at load imbalance: 
–  If you defined a phase, from paraprof window, 

right-click on phase name and select: “Show 
profile for this phase” 

–  Left-click on function name to look at timings 
across all processors 



© 2008 Pittsburgh Supercomputing Center 

Load Imbalance 

Load imbalance on one processor causing other processors to idle in MPI_Barrier 

May need to change how data is distributed, or even change underlying algorithm. 



© 2008 Pittsburgh Supercomputing Center 

Detecting Parallel Performance Issues:  
Serial Bottlenecks 

•  To identify scaling bottlenecks (including serial 
regions), do the following for each run in a 
scaling study (e.g. 2-64 cores): 
–  In Paraprof manager right-click “Default Exp” and 

select “Add Trial”.  Find packed profile file and add it. 
–  If you defined a phase, from main paraprof window 

select: Windows -> Function Legend-> Filter-
>Advanced Filtering 

–  Type in the name of the phase you defined, and click 
‘OK’ 

–  Return to Paraprof manager, right-click the name of 
the trial, and select “Add to Mean Comparison 
Window” 

•  Compare functions across increasing core 
counts 



© 2008 Pittsburgh Supercomputing Center 

Function Scaling and Serial Bottlenecks 

Identify which
 functions need to
 scale better, or be
 parallelized, in
 order to increase
 overall scalability. 

Find which
 communication
 routines are starting
 to dominate
 runtimes. 

Use call path
 information to find
 where those
 communication
 routines are being
 called 



© 2008 Pittsburgh Supercomputing Center 

Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 



© 2008 Pittsburgh Supercomputing Center 

Generating a Trace   

•  At runtime: setenv TAU_TRACE 1 
•  Follow directions here to analyze: 
http://www.psc.edu/general/software/packages/tau/TAU-quickref.pdf 

•  Insight into causes of communication 
bottlenecks 
–  Duration of individual MPI calls 
–  Use of blocking calls 
–  Posting MPI calls too early or too late 
–  Opportunities to overlap computation and 

communication 



© 2008 Pittsburgh Supercomputing Center 

TAU Trace in Jumpshot 



© 2008 Pittsburgh Supercomputing Center 

Issues with Tracing 

•  At high processor counts the amount of data 
becomes overwhelming 

•  Very selective instrumentation is critical to 
manage data 

•  Also need to isolate the computational kernel 
and trace for minimum number of iterations to 
see patterns 

•  Complexity of manually analyzing traces on 
thousands of processors is an issue 

•  SCALASCA attempts to do automated analysis 
of traces to determine communication problems 

•  Vampir, Intel Trace Analyzer: cutting-edge trace 
analyzers (but not free) 



© 2008 Pittsburgh Supercomputing Center 

Performance Engineering: Procedure 

•  Serial  
–  Assess overall serial performance (percent of peak) 
–  Identify functions where code spends most time 
–  Instrument those functions 
–  Measure code performance using hardware counters 
–  Identify inefficient regions of source code and cause of 

inefficiencies 

•  Parallel 
–  Assess overall parallel performance (scaling) 
–  Identify functions where code spends most time (this may 

change at high core counts) 
–  Instrument those functions 
–  Identify load balancing issues, serial regions 
–  Identify communication bottlenecks--use tracing to help 

identify cause and effect 



© 2008 Pittsburgh Supercomputing Center 

Hands-On   

•  Find parallel performance issues in a 
production scientific application using TAU 

•  Feel free to experiment with your own 
application 

•  Document posted on Google groups: 
 Performance_Profiling_Exercise.pdf 


