
I/O Techniques and
Performance
Optimization

Lonnie Crosby
lcrosby1@utk.edu

NICS Scientific Computing Group

Petascale Programming
Environments and Tools

July 7, 2010

Outline
• Introduction to I/O
• Path from Application to File System

– Data and Performance
– I/O Patterns
– Lustre File System
– I/O Performance Results

•MPI-IO
– General File I/O
– Derived MPI DataTypes
– Collective I/O

• Common I/O Considerations

2

Factors which affect I/O.

• I/O is simply data migration.
– Memory Disk

• I/O is a very expensive operation.
– Interactions with data in memory and on disk.

• How is I/O performed?
– I/O Pattern

• Number of processes and files.
• Characteristics of file access.

•Where is I/O performed?
– Characteristics of the computational system.
– Characteristics of the file system.

3

I/O Performance

• There is no “One Size Fits All” solution to
the I/O problem.

•Many I/O patterns work well for some range
of parameters.

• Bottlenecks in performance can occur in
many locations. (Application and/or File
system)

•Going to extremes with an I/O pattern will
typically lead to problems.

4

Data and Performance

5

• The best performance comes from situations when the
data is accessed contiguously in memory and on disk.

• Commonly, data access is contiguous in memory but
noncontiguous on disk. For example, to reconstruct a
global data structure via parallel I/O.

Memory Disk

Memory Disk

Data and Performance

6

• Sometimes, data access may be contiguous on disk but
noncontiguous in memory. For example, writing out the
interior of a domain without ghost cells.

• A large impact on I/O performance would be observed if
data access was noncontiguous both in memory and on
disk.

Memory Disk

Memory Disk

Serial I/O: Spokesperson

• Spokesperson
– One process performs I/O.

•Data Aggregation or
Duplication

•Limited by single I/O
process.

– Pattern does not scale.
•Time increases linearly

with amount of data.
•Time increases with

number of processes.

7

Disk

Parallel I/O: File-per-Process

• File per process
– All processes perform I/O

to individual files.
•Limited by file system.

– Pattern does not scale at
large process counts.
•Number of files creates

bottleneck with metadata
operations.

•Number of simultaneous
disk accesses creates
contention for file
system resources.

8

Disk

Parallel I/O: Shared File

• Shared File
– Each process performs I/O

to a single file which is
shared.

– Performance
•Data layout within the

shared file is very
important.

•At large process counts
contention can build for
file system resources.

9

Disk

Pattern Combinations

• Subset of processes which perform I/O.
– Aggregation of a group of processes data.

• Serializes I/O in group.
– I/O process may access independent files.

• Limits the number of files accessed.
– Group of processes perform parallel I/O to a shared file.

• Increases the number of shared files to increase file system usage.
• Decreases number of processes which access a shared file to decrease

file system contention.

10

11

A Bigger Picture: Lustre File System

©2009 Cray Inc.

File Striping: Physical and Logical Views

12 ©2009 Cray Inc.

Single writer performance and Lustre
• 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size

– Unable to take advantage of file system parallelism
– Access to multiple disks adds overhead which hurts performance

Lustre

0

20

40

60

80

100

120

1 2 4 16 32 64 128 160

W
rit

e
(M

B
/s

)

Stripe Count

Single Writer
Write Performance

1 MB Stripe

32 MB Stripe

13

Stripe size and I/O Operation size

Lustre

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

W
rit

e
(M

B
/s

)

Stripe Size (MB)

Single Writer
Transfer vs. Stripe Size

32 MB Transfer

8 MB Transfer

1 MB Transfer

• Single OST, 256 MB File Size
– Performance can be limited by the process (transfer size) or file system

(stripe size)

14

Single Shared Files and Lustre Stripes

Lustre

15

32 MB
Proc. 1

Proc. 2

Proc. 3

Proc. 4

…

Proc. 32

Shared File Layout #1

32 MB

32 MB

32 MB

32 MB

16

1 MB
Proc. 1

Proc. 2

Repetition #1 Proc. 3

Proc. 4

…

Proc. 32

Repetition #2 - #31 …

Proc. 1

Proc. 2

Repetition #32 Proc. 3

Proc. 4

…

Proc. 32

Shared File Layout #2

1 MB

1 MB

1 MB

1 MB

1 MB

1 MB

1 MB

1 MB

1 MB

Single Shared Files and Lustre Stripes

Lustre

File Layout and Lustre Stripe Pattern

Lustre

17

0

200

400

600

800

1000

1200

1400

1600

1800

2000

32

W
rit

e
(M

B
/s

)

Stripe Count

Single Shared File (32 Processes)
1 GB file

1 MB Stripe (Layout #1)

32 MB Stripe (Layout #1)

1 MB Stripe (Layout #2)

Scalability: File Per Process

• 128 MB per file and a 32 MB Transfer size

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

W
rit

e
(M

B
/s

)

Processes or Files

File Per Process
Write Performance

1 MB Stripe

32 MB Stripe

18

Summary

• Lustre
– Minimize contention for file system resources.
– A process should not access more than one or two OSTs.

• Performance
– Performance is limited for single process I/O.
– Parallel I/O utilizing a file-per-process or a single shared file is

limited at large scales.
– Potential solution is to utilize multiple shared file or a subset

of processes which perform I/O.

19

I/O Libraries (MPI-IO)

•Many I/O libraries such as HDF5 and Parallel NetCDF
are built atop MPI-IO.

• Such libraries are abstractions from MPI-IO.

• Such implementations allow for higher information
propagation to MPI-IO (without user intervention).

• Understand information flow through MPI-IO and how
this may affect performance.

20

MPI I/O: Opening a File

• int MPI_File_open (MPI_Comm comm, char *filename,
int amode, MPI_Info info, MPI_File *fh)
– Fortran: Subroutine with additional argument (integer ierr).

MPI_File, MPI_Info, and MPI_Comm data types are integers in
Fortran.

– File is opened for each member of MPI_comm comm.
MPI_COMM_SELF may be used for a private file.

– int amode allows the file to be opened Read or Write only.

– MPI_INFO_NULL may be used for MPI_Info info. May set hints
specific to this file. See MPICH_MPIIO_HINTS.

21

Describing the file: MPI_File_set_view
• int MPI_File_set_view (MPI_File fh, MPI_Offset disp,

MPI_Datatype etype, MPI_Datatype filetype,
char *datarep, MPI_Info_info)
– Fortran: Subroutine with additional argument (integer ierr).

MPI_File, MPI_Info, MPI_Offset, and MPI_Datatype data types
are integers in Fortran.

– etype is a data type which forms the basis of file access.
Offset is in terms of etype.

– Filetype is a data type which describes the portions of the file
for which data will be written.

– datarep may be ‘NATIVE’ for machine dependent binary.
– MPI_INFO_NULL may be used for MPI_Info info. May set hints

specific to this file. See MPICH_MPIIO_HINTS.
22

MPI Derived Data Types

• User defined data types which are made up of
elementary data types such as MPI_DOUBLE or
MPI_INTEGER.

• Derived data types can contain “holes” which are used
to read or write noncontiguous data.

• Derived data types pass information to the MPIIO
implementation which allows for better performance.

23

Subarray Data Type

24

• Parameters
– Global (18 x 18)
– Subarray (6 x 6)
– Index = {0, 6}
– Extent of data type

is 324 elements.
• Subarray contains the

data. Remaining
portions of the global
array are “holes”.

• Must define how global
array is laid out in
memory (column or
row major, i.e. Fortran
or C)

Subarray Data Type
(Linearized)

• Column Major (Fortran Ordering)

• Row Major (C Ordering)

25

108 6 12 6 12 6 12 6 12 6 12 6 120

6 6 12 6 12 6 12 6 12 6 12 6 222

Vector Data Type

• Parameters
– 6 Blocks (One for each row or column, are contiguous)
– Blocksize = 6 elements
– Stride = 18 (Elements between the beginning of each block)
– Extent of data type is 96 elements.

• Blocks contain data
• Elements not within blocks are “holes” in the data type.

26

6 12 6 12 6 12 6 12 6 12 6

MPI Data type syntax

• int MPI_Type_vector (int count, int blocklen, int stride,
MPI_DataType oldtype, MPI_Datatype *newtype)

• int MPI_Type_create_subarray (int ndims,
int *array_of_sizes, int *array_of_subsizes,
int *array_of_starts, int order, MPI_Datatype oldtype,
MPI_Datatype *newtype)
– Fortran: These are subroutines with an additional argument at

the end (integer ierr). The MPI_Datatype C data types are integers
in Fortran.

– Data types must be committed before use via:
• int MPI_Type_commit (MPI_Datatype *datatype)

27

Information in file reads/writes.

• Explicit Read/Write

– MPI_File_set_view (Offset = 108)
– MPI_File_write (6 elements)
– MPI_File_seek (12 elements)

– MPI_File_write_at (Uses explicit offsets, combines write and
seek)

28

108 6 12 6 12 6 12 6 12 6 12 6 120

Information in file reads/writes.

• Using Derived Data Types
– MPI_Type_vector

– MPI_Type_create_subarray

– MPI_File_set_view (Offset = 108 or Offset = 0, filetype = vector
or filetype = subarray)

– MPI_File_write_at (36 elements)

29

108 6 12 6 12 6 12 6 12 6 12 6 120

6 12 6 12 6 12 6 12 6 12 6

108 6 12 6 12 6 12 6 12 6 12 6 120

Collective I/O

• The use of MPI_File_write [read]_at_all or
MPI_File_write [read]_all allows for collective I/O using
shared file pointers.

• Information can be given to MPI-IO via MPI derived data
types. However, additional information can be given to
MPI-IO (between MPI ranks) by using collective I/O.

•Minimizes the number of independent file accesses.
Additionally allows collective mechanisms such as
collective buffering and data sieving to be used.

30

Read/Write Syntax

• int MPI_File_write [read]_at_all (MPI_File fh,
MPI_Offset offset, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)
– Fortran: These are subroutines with an additional argument at

the end (integer ierr). The MPI_Datatype, MPI_Offset, and
MPI_Status C data types are integers in Fortran.

– Difference between MPI_File_write [read] is the MPI_Offset
offset argument. MPI_File_write [read]_at has the same
arguments.

– MPI_STATUS_IGNORE can be used for MPI_Status *status

31

Closing Files and Freeing Memory

• int MPI_File_close (MPI_File *fh)

• int MPI_Type_free (MPI_Datatype *datatype)

– Fortran: These are subroutines with an additional argument at
the end (integer ierr). The MPI_Datatype and MPI_File C data
types are integers in Fortran.

32

MPI-IO_HINTS
•MPI-IO are generally implementation specific. Below are

options from the Cray XT5. (partial)

– striping_factor (Lustre stripe count)
– striping_unit (Lustre stripe size)
– cb_buffer_size (Size of Collective buffering buffer)
– cb_nodes (Number of aggregators for Collective buffering)
– ind_rd_buffer_size (Size of Read buffer for Data sieving)
– ind_wr_buffer_size (Size of Write buffer for Data sieving)

• export MPICH_MPIIO_HINTS = ‘ pathname pattern :
key=value : key2=value2 : …’

33

Collective Buffering and Data Sieving

• Collective Buffering
– Aggregates I/O to a process (buffer)
– This buffer is then written to disk.

• Data Sieving
– More data than needed is written/read (buffer).
– The needed information is obtained from the buffer.

34

Lustre

108 6 12 6 12 6 12 6 12 6 12 6 120

Summary

• Three Levels of I/O possible within MPI-IO.
– Explicit Read/Write
– Use of MPI Derived Data types (non-contiguous data)
– Collective I/O (parallel I/O to a shared file)

•MPI-IO Hints can be given to improve performance by
supplying more information to the library. This
information can provide the link between application
and file system.

35

Common I/O Considerations

• Standard Input/Output
• Buffered I/O
• Binary Files and Endianess
• Subsetting I/O

– Aggregation
– Turnstile
– Multiple Shared Files

36

Standard Output and Error

• Standard Output and Error
streams are effectively serial I/O.

•Generally, the MPI launcher will
aggregate these requests.
(Example: mpirun, mpiexec,
aprun, ibrun, etc..)

• Disable debugging messages
when running in production
mode.
– “Hello, I’m task 32000!”
– “Task 64000, made it through loop.”

37

Lustre

Buffered I/O
• Advantages

– Aggregates smaller read/write
operations into larger operations.

– Examples: OS Kernel Buffer,
MPI-IO Collective Buffering

• Disadvantages
– Requires additional memory for

the buffer.
– Can tend to serialize I/O.

• Caution
– Frequent buffer flushes can

adversely affect performance.

38

Buffer

Case Study: Buffered I/O
• A post processing application writes a 1GB file.
• This occurs from one writer, but occurs in many small write operations.

– Takes 1080 s (~ 18 minutes) to complete.
• IO buffers were utilized to intercept these writes

with 4 64 MB buffers.
– Takes 4.5 s to complete. A 99.6% reduction in time.

File "ssef_cn_2008052600f000"
Calls Seconds Megabytes Megabytes/sec Avg Size

Open 1 0.001119
Read 217 0.247026 0.105957 0.428931 512
Write 2083634 1.453222 1017.398927 700.098632 512
Close 1 0.220755
Total 2083853 1.922122 1017.504884 529.365466 512
Sys Read 6 0.655251 384.000000 586.035160 67108864
Sys Write 17 3.848807 1081.145508 280.904052 66686072
Buffers used 4 (256 MB)
Prefetches 6
Preflushes 15

39

Lustre

Binary Files and Endianess

• Writing a big-endian binary file with compiler
flag byteswapio

File “XXXXXX"
Calls Megabytes Avg Size

Open 1
Write 5918150 23071.28062 4088
Close 1
Total 5918152 23071.28062 4088

• Writing a little-endian binary
File “XXXXXX"

Calls Megabytes Avg Size
Open 1
Write 350 23071.28062 69120000
Close 1
Total 352 23071.28062 69120000

40

Subsetting I/O
• At large core counts, I/O performance can be hindered

– by the collection of metadata operations (File-per-process) or
– by file system contention (Single-shared-file).

•One solution is to use a subset of application processes
to perform I/O. This limits
– the number of files (File-per-process) or
– the number of processes accessing file system resources

(Single-shared-file).

• If you can not implement a subsetting approach, try to
limit the number of synchronous file opens to reduce
the number of requests simultaneously hitting the
metadata server.

41

Further Information

• Lustre Operations Manual
– http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf

•GPFS: Concepts, Planning, and Installation Guide
– http://publib.boulder.ibm.com/epubs/pdf/a7604133.pdf

• HDF5 User Guide
– http://www.hdfgroup.org/HDF5/doc/PSandPDF/HDF5_UG_r183.

pdf

• The NetCDF Tutorial
– http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-

tutorial.pdf

42

http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf�
http://publib.boulder.ibm.com/epubs/pdf/a7604133.pdf�
http://www.hdfgroup.org/HDF5/doc/PSandPDF/HDF5_UG_r183.pdf�
http://www.hdfgroup.org/HDF5/doc/PSandPDF/HDF5_UG_r183.pdf�
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.pdf�
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.pdf�

Further Information MPI-IO
– Rajeev Thakur, William Gropp, and Ewing Lusk, "A Case for Using

MPI's Derived Datatypes to Improve I/O Performance," in Proc. of
SC98: High Performance Networking and Computing, November
1998.
• http://www.mcs.anl.gov/~thakur/dtype

– Rajeev Thakur, William Gropp, and Ewing Lusk, "Data Sieving and
Collective I/O in ROMIO," in Proc. of the 7th Symposium on the
Frontiers of Massively Parallel Computation, February 1999, pp.
182-189.
• http://www.mcs.anl.gov/~thakur/papers/romio-coll.pdf

– Getting Started on MPI I/O, Cray Doc S–2490–40, December
2009.
• http://docs.cray.com/books/S-2490-40/S-2490-40.pdf

43

http://www.mcs.anl.gov/~thakur/dtype�
http://www.mcs.anl.gov/~thakur/papers/romio-coll.pdf�
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf�

	I/O Techniques and Performance Optimization�
	Outline
	Factors which affect I/O.
	I/O Performance
	Data and Performance
	Data and Performance
	Serial I/O: Spokesperson
	Parallel I/O: File-per-Process
	Parallel I/O: Shared File
	Pattern Combinations
	A Bigger Picture: Lustre File System
	File Striping: Physical and Logical Views
	Single writer performance and Lustre
	Stripe size and I/O Operation size
	Single Shared Files and Lustre Stripes
	Slide Number 16
	File Layout and Lustre Stripe Pattern
	Scalability: File Per Process
	Summary
	I/O Libraries (MPI-IO)
	MPI I/O: Opening a File
	Describing the file: MPI_File_set_view
	MPI Derived Data Types
	Subarray Data Type
	Subarray Data Type�(Linearized)
	Vector Data Type
	MPI Data type syntax
	Information in file reads/writes.
	Information in file reads/writes.
	Collective I/O
	Read/Write Syntax
	Closing Files and Freeing Memory
	MPI-IO_HINTS
	Collective Buffering and Data Sieving
	Summary
	Common I/O Considerations
	Standard Output and Error
	Buffered I/O
	Case Study: Buffered I/O
	Binary Files and Endianess
	Subsetting I/O�
	Further Information
	Further Information MPI-IO

