
Tutorial: Sector/Sphere
Installation and Usage

Yunhong Gu

July 2010

Agenda

• System Overview

• Installation

• File System Interface

• Sphere Programming

• Conclusion

The Sector/Sphere Software

• Open Source, BSD/Apache license, available
from http://sector.sf.net

• Developed in C++

• Includes two components:

– Sector distributed file system

– Sphere parallel data processing framework

• Current version is 2.4

http://sector.sf.net/

Why Sector/Sphere

• Sector distributed file system
– High performance, scalable user space file system running on

cluster of commodity computers
– Support wide area networks
– Application-aware
– Compatible with legacy systems
– Content distribution/collection/sharing

• Sphere parallel data processing framework
– Massive parallel in-storage processing based data locality
– Simplified API with UDF applied to data segments in parallel
– Transparent load balancing and fault tolerance
– Faster than Hadoop MapReduce by 2 – 4x

System Overview

Security Server Masters Client

Slaves

SSL SSL

Data

System Components

• Security server
– Maintain user accounts and other security policies,

such as IP ACL
– Sector uses its own user accounts, but will be

expandable to connect to other security systems

• Master server
– Maintain metadata and manage file system running,

accepts users’ requests
– Multiple master servers can be started for load

balancing and high availability

System Components (cont.)

• Slave

– Commodity computers with internal disks and
Gb/s or 10Gb/s network connections

– Sector uses Slave’s native file system (e.g., ext3,
xfs, etc.) to store data

• Client

– Includes libraries, header files, and tools to access
the Sector system and develop applications

System Requirements

• Sector server side works on Linux only
– Windows servers will be available in version 2.5 or 2.6

• Sector client works on Linux and Windows

• On Linux, the system requires g++ version 3.4 or above
and openssl development library (libssl-dev or openssl-
devel)

• In this tutorial we will only explain the installation on
Linux

Code Structure

• conf : configuration files
• tools: client tools
• doc: Sector documentation
• include: programming header files (C++)
• security: security server
• Makefile
• examples: Sphere programming examples
• lib: places to stored compiled libraries
• slave: slave server
• fuse: FUSE interface
• master: master server

Installation

• Documentation:
http://sector.sourceforge.net/doc/index.htm

• Download sector.2.4.tar.gz from Sector
SourceForge project website

• tar –zxvf sector.2.4.tar.gz

• ./sector-sphere
– run “make”

• RPM to be available for the next version (2.5)

http://sector.sourceforge.net/doc/index.htm

Configuration

• ./conf/master.conf: master server configurations, such
as Sector port, security server address, and master
server data location

• ./conf/slave.conf: slave node configurations, such as
master server address and local data storage path

• ./conf/client.conf: master server address and user
account/password so that a user doesn’t need to
specify this information every time they run a Sector
tool

Configuration File Path

• $SECTOR_HOME/conf

• ../conf

– If $SECTOR_HOME is not set, all commands should
be run at their original directory (version 2.4)

• /opt/sector/conf (available in version 2.5),
with RPM installation

• #SECTOR server port number
• #note that both TCP/UDP port N and N-1 will be used
• SECTOR_PORT
• 6000

• #security server address
• SECURITY_SERVER
• ncdm153.lac.uic.edu:5000

• #data directory, for the master to store temporary system data
• #this is different from the slave data directory and will not be used to store data files
• DATA_DIRECTORY
• /home/u2/yunhong/work/sector_master/

• #number of replicas of each file, default is 1
• REPLICA_NUM
• 2

• #metadata location: MEMORY is faster, DISK can support more files, default is MEMORY
• META_LOC
• MEMORY

• #slave node timeout, in seconds, default is 600 seconds
• #if the slave does not send response within the time specified here,
• #it will be removed and the master will try to restart it
• #SLAVE_TIMEOUT
• # 600

• #minimum available disk space on each node, default is 10GB
• #in MB, recommended 10GB for minimum space, except for testing purpose
• #SLAVE_MIN_DISK_SPACE
• # 10000

• #log level, 0 = no log, 9 = everything, higher means more verbose logs, default is 1
• #LOG_LEVEL
• # 1

• #Users may login without a certificate
• #ALLOW_USER_WITHOUT_CERT
• # TRUE

Start and Stop Sector

• Step 1: start the security server ./security/sserver.
– Default port is 5000, use sserver new_port for a different port

number

• Step 2: start the masters and slaves using ./master/start_all
– Need to configure password-free ssh from master to all slave

nodes
– Need to configure ./conf/slaves.list

• To shutdown Sector, use ./master/stop_all (brutal force) or
./tools/sector_shutdown (graceful)
– Graceful shutdown, including shutdown of part of the system

(e.g., one rack) is in SVN, will be released in version 2.5

Check the Installation

• At ./tools, run sector_sysinfo

• This command should print the basic information about the
system, including masters, slaves, files in the system,
available disk space, etc.

• If nothing is displayed or incorrect information is displayed,
something is wrong.

• It may be helpful to run “start_master” and “start_slave”
manually (instead of “start_all”) in order to debug

Sector Client Tools

• Located at ./tools

• Most file system commands are available: ls, stat,
rm, mkdir, mv, etc.
– Note that Sector is a user space file system and there

is no mount point for these commands. Absolute dir
has to be passed to the commands.

• upload/download can be used to copy files into
sector from outside or out of sector to the local
file system

Sector-FUSE

• Require FUSE library installed

• ./fuse
– make

– ./sector-fuse <local path>

• FUSE allows Sector to be mounted as a local file
system directory so you can use the common file
system commands to access Sector files.

SectorFS API

• You may open any source files in ./tools as an
example for SectorFS API.

• Sector requires login/logout, init/close.

• File operations are similar to common FS APIs,
e.g., open, read, write, seekp/seekg,
tellp/tellg, close, stat, etc.

Example Use Scenarios of Sector

• Inexpensive distributed file system: open source, commodity
computers, software level fault tolerance

• Sector files are not split into blocks, thus they can be processed by
other systems directly, e.g., work flow systems, grid schedulers

• Can be set up on VMs/Clouds, e.g., EC2

• Can be deployed over wide area networks

• Can be used for data sharing and distribution
– Sector clients use UDT high speed data transfer protocol to download

data from a nearby replica

Sector Data Sharing over WAN

Sector/Sphere

Data Provider

US Location Data Provider

US Location

Data Provider

Europe Location

U
pl
oa

d

U
p
lo

a
d

U
pload

Data User

US Location

Processing

Data Reader

Asia Location

Download

Sector Public Cloud

• http://sector.sourceforge.net/SectorPublicClo
ud.html

• Test use our public Sector system to
upload/download/share data

http://sector.sourceforge.net/SectorPublicCloud.html
http://sector.sourceforge.net/SectorPublicCloud.html

Sphere Data Processing

• Support parallel in-storage data processing

• Apply user-defined functions (UDFs) to data
segments (records, group of records, files, and
directories) in parallel

• Support transparent load balancing and fault
tolerance

Data segmentation

• A data set consists of many files and directories

• The minimum data processing unit by Sphere is
called a “segment”

• If a segment is smaller than a file, then an offset
index must exist so that Sphere can use it to
parse the file into segments.
– my_data.dat, my_data.dat.idx

UDF

• int _FUNCTION_(const SInput* input, SOutput* output,
SFile* file)
– Must follow the above format

• SInput contains input data, i.e., a segment, and related
information

• SOutput can be used to store the processing results

• SFile carries Sector file system information, in case it is
needed by the UDF

Sphere Client Application

• Client init() & login()

• Specify input SphereStream with list of Sector files or directories

• Specify output SphereStream for the results

• int run(SphereStream& input, SphereStream& output, string& op,
int& rows, char* param = NULL, int size = 0);

• Wait and post-process results

• Client logout() & close()

Complex Applications

• Sphere output can be the input of the next processing, therefore
multiple UDFs can be applied in a sequence.

• Output can be scattered to multiple locations according to the key
of each output tuple
– Sphere can support MapReduce style applications.

• Multiple inputs can be put into directories and Sphere can process
each directory as an input segment.

• Output data location can be specified when necessary, so that
outputs from multiple processing can be sent to the same locations
for further processing (e.g., join).

A Complex Sphere Example
Join two large datasets

• scan each data set,
send data to different
bucket files according
the keys

• Put bucket files of the
same keys on the same
node

• Merge the bucket files,
as they contain tuples
with same keys

DataSet 1

UDF 1 UDF 1

DataSet 2

UDF 2 UDF 2

UDF-

Join

UDF-

Join

UDF-

Join

Conclusion

• Sector is a distributed file system
– High performance, user space, file system level fault

tolerance (via replication), support wide area networks

• Sphere supports massive parallel in-storage data
processing
– Simplified API, Transparent load balancing and fault

tolerance, 2-4x faster than Hadoop MapReduce

• Open source, C++, Linux (Windows to be fully
supported soon)

Thanks

• Please find more information at
http://sector.sf.net

• Email me: Yunhong Gu gu@lac.uic.edu

• Open source contributors are welcome

– 5 active contributors currently

http://sector.sf.net/
mailto:gu@lac.uic.edu

