Tutorial: Sector/Sphere
Installation and Usage

Agenda

System Overview
Installation

File System Interface
Sphere Programming
Conclusion

The Sector/Sphere Software

Open Source, BSD/Apache license, available
from http://sector.sf.net

Developed in C++
Includes two components:

— Sector distributed file system
— Sphere parallel data processing framework

Current version is 2.4

http://sector.sf.net/

Why Sector/Sphere

* Sector distributed file system

— High performance, scalable user space file system running on
cluster of commodity computers

— Support wide area networks

— Application-aware

— Compatible with legacy systems

— Content distribution/collection/sharing

* Sphere parallel data processing framework
— Massive parallel in-storage processing based data locality
— Simplified API with UDF applied to data segments in parallel
— Transparent load balancing and fault tolerance
— Faster than Hadoop MapReduce by 2 — 4x

System Overview

Security Server Masters Client
Q ssL () st Q
\[/ <
| 7/
I i
| 5
| /’
/

System Components

* Security server

— Maintain user accounts and other security policies,
such as IP ACL

— Sector uses its own user accounts, but will be
expandable to connect to other security systems

e Master server

— Maintain metadata and manage file system running,
accepts users’ requests

— Multiple master servers can be started for load
balancing and high availability

System Components (cont.)

e Slave

— Commodity computers with internal disks and
Gb/s or 10Gb/s network connections

— Sector uses Slave’s native file system (e.g., ext3,
xfs, etc.) to store data

e Client

— Includes libraries, header files, and tools to access
the Sector system and develop applications

System Requirements

Sector server side works on Linux only
— Windows servers will be available in version 2.5 or 2.6

Sector client works on Linux and Windows

On Linux, the system requires g++ version 3.4 or above
and openssl development library (libssl-dev or openssl-
devel)

In this tutorial we will only explain the installation on
Linux

Code Structure

conf : configuration files

tools: client tools

doc: Sector documentation

include: programming header files (C++)
security: security server

Makefile

examples: Sphere programming examples
lib: places to stored compiled libraries
slave: slave server

fuse: FUSE interface

master: master server

Installation

Documentation:
http://sector.sourceforge.net/doc/index.htm

Download sector.2.4.tar.gz from Sector
SourceForge project website

tar —zxvf sector.2.4.tar.gz

./sector-sphere
— run “make”

RPM to be available for the next version (2.5)

http://sector.sourceforge.net/doc/index.htm

Configuration

 ./conf/master.conf: master server configurations, such
as Sector port, security server address, and master
server data location

 ./conf/slave.conf: slave node configurations, such as
master server address and local data storage path

» ./conf/client.conf: master server address and user
account/password so that a user doesn’t need to
specify this information every time they run a Sector
tool

Configuration File Path

 SSECTOR_HOME/conf

o .. /conf
— If SSECTOR_HOME is not set, all commands should
be run at their original directory (version 2.4)

» /opt/sector/conf (available in version 2.5),
with RPM installation

#SECTOR server port number
#note that both TCP/UDP port N and N-1 will be used
SECTOR_PORT

6000

#security server address
SECURITY_SERVER
ncdm153.lac.uic.edu:5000

#data directory, for the master to store temporary system data
#this is different from the slave data directory and will not be used to store data files
DATA_DIRECTORY

/home/u2/yunhong/work/sector_master/

#number of replicas of each file, default is 1
REPLICA_NUM
2

#metadata location: MEMORY is faster, DISK can support more files, default is MEMORY
META_LOC
MEMORY

#tslave node timeout, in seconds, default is 600 seconds

#if the slave does not send response within the time specified here,
#it will be removed and the master will try to restart it
#SLAVE_TIMEOUT

600

#minimum available disk space on each node, default is 10GB

#in MB, recommended 10GB for minimum space, except for testing purpose
#SLAVE_MIN_DISK_SPACE

10000

#log level, 0 = no log, 9 = everything, higher means more verbose logs, default is 1
#LOG_LEVEL
1

#Users may login without a certificate
H#ALLOW_USER_WITHOUT_CERT
TRUE

Start and Stop Sector

» Step 1: start the security server ./security/sserver.

— Default port is 5000, use sserver new_port for a different port
number

» Step 2: start the masters and slaves using ./master/start_all

— Need to configure password-free ssh from master to all slave
nodes

— Need to configure ./conf/slaves.list

* To shutdown Sector, use ./master/stop _all (brutal force) or
.Jtools/sector_shutdown (graceful)

— Graceful shutdown, including shutdown of part of the system
(e.g., one rack) is in SVN, will be released in version 2.5

Check the Installation

At ./tools, run sector_sysinfo

This command should print the basic information about the
system, including masters, slaves, files in the system,
available disk space, etc.

If nothing is displayed or incorrect information is displayed,
something is wrong.

It may be helpful to run “start_master” and “start_slave”
manually (instead of “start_all”) in order to debug

Sector Client Tools
* Located at ./tools

* Most file system commands are available: |s, stat,
rm, mkdir, mv, etc.

— Note that Sector is a user space file system and there
is no mount point for these commands. Absolute dir
has to be passed to the commands.

* upload/download can be used to copy files into
sector from outside or out of sector to the local

file system

Sector-FUSE

* Require FUSE library installed

o [fuse
— make
— ./sector-fuse <local path>

 FUSE allows Sector to be mounted as a local file
system directory so you can use the common file
system commands to access Sector files.

SectorFS API

* You may open any source files in ./tools as an
example for SectorFS API.

* Sector requires login/logout, init/close.

* File operations are similar to common FS APIs,
e.g., open, read, write, seekp/seekg,
tellp/tellg, close, stat, etc.

Example Use Scenarios of Sector

Inexpensive distributed file system: open source, commodity
computers, software level fault tolerance

Sector files are not split into blocks, thus they can be processed by
other systems directly, e.g., work flow systems, grid schedulers

Can be set up on VMs/Clouds, e.g., EC2
Can be deployed over wide area networks

Can be used for data sharing and distribution

— Sector clients use UDT high speed data transfer protocol to download
data from a nearby replica

Sector Data Sharing over WAN

\()6-d ,
pow?
Data Reader
A Asia Location
Sector/Sphere
Processing -
Data User A \ ¢
US Location xS %
QQ\O < %
o
2 Q)
- Data Provider
Data Provider O Europe Location
US Location Data Provider

US Location

Sector Public Cloud

* http://sector.sourceforge.net/SectorPublicClo
ud.html

e Test use our public Sector system to
upload/download/share data

http://sector.sourceforge.net/SectorPublicCloud.html
http://sector.sourceforge.net/SectorPublicCloud.html

Sphere Data Processing

e Support parallel in-storage data processing

* Apply user-defined functions (UDFs) to data
segments (records, group of records, files, and
directories) in parallel

e Support transparent load balancing and fault
tolerance

Data segmentation

e A data set consists of many files and directories

* The minimum data processing unit by Sphere is
called a “segment”

* If a segment is smaller than a file, then an offset
index must exist so that Sphere can use it to
parse the file into segments.

— my_data.dat, my_data.dat.idx

UDF

int _FUNCTION _(const Sinput™ input, SOutput™ output,
SFile* file)
— Must follow the above format

SInput contains input data, i.e., a segment, and related
information

SOutput can be used to store the processing results

SFile carries Sector file system information, in case it is
needed by the UDF

Sphere Client Application

Client init() & login()
Specify input SphereStream with list of Sector files or directories
Specify output SphereStream for the results

int run(SphereStream& input, SphereStream& output, string& op,
int& rows, char* param = NULL, int size = 0);

Wait and post-process results

Client logout() & close()

Complex Applications

Sphere output can be the input of the next processing, therefore
multiple UDFs can be applied in a sequence.

Output can be scattered to multiple locations according to the key
of each output tuple

— Sphere can support MapReduce style applications.

Multiple inputs can be put into directories and Sphere can process
each directory as an input segment.

Output data location can be specified when necessary, so that
outputs from multiple processing can be sent to the same locations
for further processing (e.g., join).

A Complex Sphere Example
Join two large datasets

e scan each data set,

DataSet 2

send data to different

bucket files according

the keys

* Put bucket files of the
same keys on the same
node

UDF- UDF- UDF-

 Merge the bucket files, Join Join Join

as they contain tuples
with same keys

Conclusion

Sector is a distributed file system

— High performance, user space, file system level fault
tolerance (via replication), support wide area networks

Sphere supports massive parallel in-storage data
processing

— Simplified API, Transparent load balancing and fault
tolerance, 2-4x faster than Hadoop MapReduce

Open source, C++, Linux (Windows to be fully
supported soon)

Thanks

e Please find more information at
http://sector.sf.net

* Email me: Yunhong Gu gu@Iac.uic.edu

* Open source contributors are welcome
— 5 active contributors currently

http://sector.sf.net/
mailto:gu@lac.uic.edu

