Plug-and-play Virtual Appliance Clusters Running Hadoop

Dr. Renato Figueiredo ACIS Lab - University of Florida

Introduction

- You have so far learned about how to use Hadoop clusters
- Up to now, you have used resources configured by others
- In this lecture you will learn about ways of deploying your own software stack using virtual appliances
- And we will overview a system that makes for simple configuration of groups of virtual appliances – i.e. virtual clusters

Objectives

- Concepts you will learn:
 - What is a virtual appliance?
 - What is a GroupVPN?
 - What is a virtual cluster?

- Demonstrations, software that you will be able to take and follow on your own
 - Deploy your Hadoop cluster (and beyond)
 - On clouds e.g. FutureGrid, EC2, private cloud
 - On your own local resources desktops
 - Even across institutions

Outline

- Virtual appliances and the Grid appliance
- GroupVPN easy to use, social VPNs
- Case study and demonstration: creating your own Hadoop cluster
 - Local resources
 - Cloud resources
 - Across providers

What is an appliance?

- Physical appliances
 - Webster "an instrument or device designed for a particular use or function"

What is an appliance?

- Hardware/software appliances
 - TV receiver + computer + hard disk + Linux + user interface

Computer + network interfaces + FreeBSD + user interface

What is a virtual appliance?

 An appliance that packages software and configuration needed for a particular purpose into a virtual machine "image"

 The virtual appliance has no hardware – just software and configuration

The image is a (big) file

It can be instantiated on hardware

Virtual appliance example

Linux + Apache + MySQL + PHP

We were talking about Hadoop?

Replace Apache, MySQL, PHP with the middleware of your choice

What about the network?

- Multiple Web servers might be completely independent from each other
- Hadoop workers are not
 - Need to communicate and coordinate with each other
 - Each worker needs an IP address, uses TCP/IP sockets
- Cluster middleware stacks assume a collection of machines, typically on a LAN (Local Area Network)

Enter virtual networks

NOWs, COWs

- ·Local-area
- Physical machines
- Self-organizing switching

(e.g. Ethernet spanning tree)

"WOWs"

- Wide-area
- Virtual machines (VMs)
- Self-organizing overlay

IP tunnels, P2P routing

Physical machines

Virtual cluster appliances

Virtual appliance + virtual network

Virtual network architecture

Demonstration

A virtual appliance cluster

Background

- Virtual appliances
 - Encapsulate software environment in image
 - Virtual disk file(s) and virtual hardware configuration
- The Grid appliance
 - Encapsulates cluster software environments
 - Current examples: Condor, MPI, Hadoop
 - Homogeneous images at each node
 - Virtual LAN connecting nodes to form a cluster
 - Deploy within or across domains

Grid appliance in a nutshell

- Plug-and-play clusters with a preconfigured software environment
 - Linux + (Hadoop, Condor, MPI, ...)
 - Scripts for zero-configuration
 - "Virtual machine" appliance; open-source software runs on Linux, Windows, Mac
- Hands-on examples, bootstrap infrastructure, and zero-configuration software – you're off to a quick start

Grid appliance in a nutshell

- Creating an equivalent Grid on your own resources, or on cloud providers, is also easy
- Deploy image on FutureGrid, Amazon EC2
- Copy the same appliance to clusters, PC labs
- Simple deployment and management of adhoc clusters
 - Opportunistic computing
 - Testing, evaluation
 - Education, training

Example: Desktop Grids

- Reuse wealth of O/S tools:
 VM image = files
 Copy, compress, transfer
 VM instance = process
 Ms Office
 Virtual Machine
 Host Operating System / Drivers
- Easy install on typical systems
 - KVM, VirtualBox: open-source
 - VMware Player/Server/Workstation

Appliance/GroupVPN Example

Cloud deployment

- Cloud meaning Infrastructure-as-a-Service
 - Pay as needed
 - Elasticity you typically only need cycles near conference deadlines
 - 100 nodes for two weeks vs 4 nodes for a year?
 - Management, cooling, power costs are not an issue
 - Amazon EC2 pricing today makes it a viable option
 - On-demand: \$0.085/hour (1 core, 1.7GB), \$0.34/hour for large (2 cores, 7.5GB)
 - \$2856 for 100 small nodes for 2 weeks
 - Reserved: \$228 fee, then \$0.03/hour
 - Research credits available through grants
 - Research infrastructures
 - FutureGrid; Science Clouds
 - Private clouds

Example – FutureGrid

Grid appliance: under the hood

- VM instances + GroupVPN + Grid/cloud middleware
 - VM instances (Xen, Vmware, KVM, ...) provide:
 - Sandboxing; software packaging; decoupling
 - Can be provisioned ad-hoc or through Cloud middleware
 - Virtual network (UF's GroupVPN) provides:
 - Virtual private LAN over WAN; self-configuring and capable of firewall/NAT traversal
 - Grid/cloud middleware (Condor, Hadoop, MPI):
 - Scheduling, data transfers, ...
 - unmodified

Virtual network: GroupVPN

- Key technique: IP-over-P2P (IPOP) tunneling
 - Interconnect VM appliances
 - VMs perceive a virtual LAN environment
- Self-configuring
 - Avoid administrative overhead of typical VPNs
 - NAT and firewall traversal
- Scalable and robust
 - P2P routing deals with node joins and leaves
- Networks are isolated
 - One or more private IP address spaces
 - Decentralized DHCP serves addresses for each space

GroupVPN Overview

Bootstrapping private links through Web 2.0 interfaces and IP-over-P2P overlay tunneling

Social

Creating your own GroupVPN

- Setting up and managing typical VPNs can be daunting
 - VPN server(s), key distribution, NAT traversal
- GroupVPN makes it simple for users to create and manage virtual cluster VPNs
- Key insights:
 - Web 2.0 interface: create/manage user groups
 - All the complexity of setting up and managing VPN links is automated

GroupVPN Web interface

- You can request to join or create your own VPN group
 - Determines who is allowed to connect to virtual network
- You can request to join or create your own appliance group
 - Determines priorities of users on resources owned by their groups

Demonstration

GroupVPN user interface

Deploying virtual clusters

Same image, different VPNs

GroupVPN architecture

Under the hood: overlay architecture

- Bi-directional structured overlay (Brunet library)
- Self-configured NAT traversal

path

Self-healing structure

Multi-hop **X** Joomla!

Cloud deployment approach

- Generate virtual floppies
 - Through GroupVPN and GroupAppliance
 Web interface
- Deploy appliances image(s)
 - FutureGrid (Nimbus/Eucalyptus), EC2
 - GUI or command line tools
 - Use APIs to copy virtual floppy to image
- Submit jobs; terminate VMs when done

FutureGrid example - Nimbus

Example using Nimb Nimbus service workspace.sh --deploy endpoint /tmp/floppy-worker.zip https://f1r.idp.ufl.future /services/Work file /tmp/outpy /tmp/grid-appliance.xml --deploy-mem 1000 --deploy-duration 100 --trash-at-SSH public key to log shutdown Trash in to instance displayname /home/renato/.ssh/id_dsa.pub

FutureGrid example - Eucalyptus

Example using Eucalyptus (or ec2-runinstances on Amazon Image ID on **GroupVPN floppy Eucalyptus server** image floppy.zip --instance-type m1.large -k keypair SSH public key to log in to instance

Demonstration

- Deploying virtual appliance node on FutureGrid
- Configuring Hadoop cluster

Local appliance deployments

- Two possibilities:
 - Share our "bootstrap" infrastructure, but run a separate GroupVPN
 - Simplest to setup
 - Deploy your own "bootstrap" infrastructure
 - More work to setup
 - Especially if across multiple LANs
 - Potential for faster connectivity

PlanetLab bootstrap

- Shared virtual network bootstrap
 - Runs 24/7 on 100s of machines on the public Internet
 - Connect machines across multiple domains, behind NATs

PlanetLab bootstrap: approach

- Create GroupVPN and GroupAppliance on the Grid appliance Web site
- Download configuration floppy
- Point users to the interface; allow users you trust into the group
- Trusted users can download configuration floppies and boot up appliances

Private bootstrap: General approach

- Good choice for single-domain pools
- Create GroupVPN and GroupAppliance on the Grid appliance Web site
- Deploy a small IPOP/GroupVPN bootstrap P2P pool
 - Can be on a physical machine, or appliance
 - Detailed instructions at grid-appliance.org
- The remaining steps are the same as for the shared bootstrap

Connecting external resources

- GroupVPN can run directly on a physical machine, if desired
 - Provides a VPN network interface
 - Useful for example if you already have a local Condor pool
 - Can "flock" to Archer
 - Also allows you to install Archer stack directly on a physical machine if you wish

Demonstration

 Connecting a local appliance to FutureGrid cluster

Where to go from here?

- Tutorials on FutureGrid and Grid appliance Web sites for various middleware stacks
 - Condor, MPI, Hadoop
- A community resource for educational virtual appliances
 - Success hinges on users effectively getting involved
 - If you are happy with the system, let others know!
 - Contribute with your own content virtual appliance images, tutorials, etc

Questions?

- More information:
 - http://www.futuregrid.org
 - http://grid-appliance.org

• This document was developed with support from the National Science Foundation (NSF) under Grant No. 0910812 to Indiana University for "FutureGrid: An Experimental, High-Performance Grid Test-bed." Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF

