
Making the Most of the I/O stack

Rob Latham
robl@mcs.anl.gov
Mathematics and Computer Science Division
Argonne National Laboratory

July 26, 2010

mailto:robl@mcs.anl.gov

2

Applications, Data Models, and I/O
 Applications have data models

appropriate to domain
– Multidimensional typed arrays, images

composed of scan lines, variable length
records

– Headers, attributes on data

 I/O systems have very simple
data models
– Tree-based hierarchy of containers
– Some containers have streams of bytes

(files)
– Others hold collections of other containers

(directories or folders)

 Someone has to map from one
to the other!

Graphic from J. Tannahill, LLNL

Graphic from A. Siegel, ANL

Large-Scale Data Sets
Application teams are beginning to generate 10s of Tbytes of data in a single
simulation. For example, a recent GTC run on 29K processors on the XT4
generated over 54 Tbytes of data in a 24 hour period [1].

PI Project
On-Line
Data Off-Line Data

Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB
Dean, David Computational Nuclear Structure 4TB 40TB
Baker, David Computational Protein Structure 1TB 2TB
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB
Wolverton, Christopher Kinetics and Thermodynamics of Metal and

Complex Hydride Nanoparticles
5TB 100TB

Washington, Warren Climate Science 10TB 345TB
Tsigelny, Igor Parkinson's Disease 2.5TB 50TB
Tang, William Plasma Microturbulence 2TB 10TB
Sugar, Robert Lattice QCD 1TB 44TB
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB

Data requirements for select 2008 INCITE applications at ALCF

[1] S. Klasky, personal correspondence, June 19, 2008.

3

Disk Access Rates over Time

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph.

4

Challenges in Application I/O

 Leveraging aggregate communication and I/O bandwidth of
clients
– …but not overwhelming a resource limited I/O system with

uncoordinated accesses!

 Limiting number of files that must be managed
– Also a performance issue

 Avoiding unnecessary post-processing

 Often application teams spend so much time on this that they
never get any further:
– Interacting with storage through convenient abstractions

– Storing in portable formats

Parallel I/O software is available to address all of these
problems, when used appropriately.

5

I/O for Computational Science

Additional I/O software provides improved performance and usability over directly
accessing the parallel file system. Reduces or (ideally) eliminates need for
optimization in application codes.

6

7

Parallel File System

 Manage storage hardware
– Present single view
– Stripe files for performance

 In the I/O software stack
– Focus on concurrent, independent access
– Publish an interface that middleware can use effectively

• Rich I/O language
• Relaxed but sufficient semantics

Parallel File Systems

 Building block for HPC I/O systems
– Present storage as a single, logical storage unit
– Stripe files across disks and nodes for performance
– Tolerate failures (in conjunction with other HW/SW)

 User interface is often POSIX file I/O interface, not
very good for HPC

8

An example parallel file system, with large astrophysics checkpoints distributed
across multiple I/O servers (IOS) while small bioinformatics files are each stored on a
single IOS.

C C C C C

Comm. Network

PFS PFS PFS PFS PFS

IOSIOS IOS IOS

H01

/pfs

/astro

H03 /bioH06

H02
H05

H04

H01

/astro

/pfs

/bio

H02

H03

H04

H05 H06

chkpt32.nc

prot04.seq prot17.seq

9

Process 0 Process 0

Contiguous and Noncontiguous I/O

 Contiguous I/O moves data from a single memory block into a single file region
 Noncontiguous I/O has three forms:

– Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
 Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)
 Describing noncontiguous accesses with a single operation passes more knowledge to

I/O system

Noncontiguous
in File

Noncontiguous
in Memory

Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

Extracting variables from a block
and skipping ghost cells will result
in noncontiguous I/O.

Locking in Parallel File Systems

Most parallel file systems use locks to manage concurrent access to
files
Files are broken up into lock units
Clients obtain locks on units that they will access before
I/O occurs
Enables caching on clients as well (as long as client has a lock, it
knows its cached data is valid)
Locks are reclaimed from clients when others desire access

10

If an access touches any
data in a lock unit, the
lock for that region must
be obtained before
access occurs.

Locking and Concurrent Access

11

I/O Forwarding

 Newest layer in the stack
– Present in some of the largest systems

– Provides bridge between system and
storage in machines such as the
Blue Gene/P

 Allows for a point of aggregation, hiding true number of clients
from underlying file system

 Poor implementations can lead to unnecessary serialization,
hindering performance

12

13

I/O Middleware

 Match the programming model
(e.g. MPI)

 Facilitate concurrent access by
groups of processes
– Collective I/O

– Atomicity rules

 Expose a generic interface
– Good building block for high-level libraries

 Efficiently map middleware operations into PFS ones
– Leverage any rich PFS access constructs, such as:

• Scalable file name resolution

• Rich I/O descriptions

14

Independent and Collective I/O

 Independent I/O operations specify only what a single process will do
– Independent I/O calls do not pass on relationships between I/O on other

processes

 Many applications have phases of computation and I/O
– During I/O phases, all processes read/write data
– We can say they are collectively accessing storage

 Collective I/O is coordinated access to storage by a group of processes
– Collective I/O functions are called by all processes participating in I/O
– Allows I/O layers to know more about access as a whole, more opportunities

for optimization in lower software layers, better performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

15

High Level Libraries

 Match storage abstraction
to domain
– Multidimensional datasets
– Typed variables
– Attributes

 Provide self-describing, structured files
 Map to middleware interface

– Encourage collective I/O

 Implement optimizations that middleware cannot, such as
– Caching attributes of variables
– Chunking of datasets

I/O Hardware and Software on Blue Gene/P

16

What we’ve said so far…

 Application scientists have basic goals for interacting
with storage
– Keep productivity high (meaningful interfaces)
– Keep efficiency high (extracting high performance from

hardware)

 Many solutions have been pursued by application
teams, with limited success
– This is largely due to reliance on file system APIs, which are

poorly designed for computational science

 Parallel I/O teams have developed software to
address these goals
– Provide meaningful interfaces with common abstractions
– Interact with the file system in the most efficient way

possible

17

The MPI-IO Interface

18

19

MPI-IO

 I/O interface specification for use in MPI apps
 Data model is same as POSIX

– Stream of bytes in a file

 Features:
– Collective I/O
– Noncontiguous I/O with MPI datatypes and file views
– Nonblocking I/O
– Fortran bindings (and additional languages)
– System for encoding files in a portable format (external32)

• Not self-describing - just a well-defined encoding of types

 Implementations available on most platforms (more later)

20

Example: Visualization Staging

 Often large frames must be preprocessed before display on a tiled
display

 First step in process is extracting “tiles” that will go to each projector
– Perform scaling, etc.

 Parallel I/O can be used to speed up reading of tiles
– One process reads each tile

 We’re assuming a raw RGB format with a fixed-length header

Tile 0

Tile 3

Tile 1

Tile 4 Tile 5

Tile 2

21

MPI Subarray Datatype

 MPI_Type_create_subarray can describe any N-dimensional
subarray of an N-dimensional array

 In this case we use it to pull out a 2-D tile
 Tiles can overlap if we need them to
 Separate MPI_File_set_view call uses this type to select the

file region

frame_size[1]

fr
a
m

e
_s

i z
e
[0

]

Tile 4

tile_start[1] tile_size[1]

tile
_sta

rt [0
]tile

_size
[0

]

22

Opening the File, Defining RGB Type

MPI_Datatype rgb, filetype;
MPI_File filehandle;
ret = MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

/* collectively open frame file */
ret = MPI_File_open(MPI_COMM_WORLD, filename,

MPI_MODE_RDONLY, MPI_INFO_NULL, &filehandle);

/* first define a simple, three-byte RGB type */
ret = MPI_Type_contiguous(3, MPI_BYTE, &rgb);
ret = MPI_Type_commit(&rgb);
/* continued on next slide */

23

Defining Tile Type Using Subarray

/* in C order, last array
 * value (X) changes most
 * quickly
 */
frame_size[1] = 3*1024;
frame_size[0] = 2*768;
tile_size[1] = 1024;
tile_size[0] = 768;
tile_start[1] = 1024 * (myrank % 3);
tile_start[0] = (myrank < 3) ? 0 : 768;
ret = MPI_Type_create_subarray(2, frame_size,

tile_size, tile_start, MPI_ORDER_C, rgb, &filetype);
ret = MPI_Type_commit(&filetype);

frame_size[1]

fr
a
m

e
_s

i z
e
[0

]

Tile 4

tile_start[1] tile_size[1]

tile
_sta

rt [0
]

tile
_size

[0
]

24

Reading Noncontiguous Data

/* set file view, skipping header */
ret = MPI_File_set_view(filehandle,

file_header_size, rgb, filetype, "native",
MPI_INFO_NULL);

/* collectively read data */
ret = MPI_File_read_all(filehandle, buffer,

tile_size[0] * tile_size[1], rgb, &status);
ret = MPI_File_close(&filehandle);

 MPI_File_set_view is the MPI-IO mechanism for describing
noncontiguous regions in a file
 In this case we use it to skip a header and read a subarray

 Using file views, rather than reading each individual piece,
gives the implementation more information to work with (more
later)

 Likewise, using a collective I/O call (MPI_File_read_all) provides
additional information for optimization purposes (more later)

25

Under the Covers of MPI-IO

 MPI-IO implementation given a lot of information in this example:
– Collection of processes reading data
– Structured description of the regions

 Implementation has some options for how to perform the data
reads
– Noncontiguous data access optimizations
– Collective I/O optimizations

Noncontiguous I/O: Data Sieving

 Data sieving is used to combine
lots of small accesses into a
single larger one
– Remote file systems (parallel or not)

tend to have high latencies

– Reducing # of operations important

 Similar to how a block-based file
system interacts with storage

 Generally very effective, but not
as good as having a PFS that
supports noncontiguous access

Buffer

Memor
y

File

Data Sieving Read Transfers

26

Data Sieving Write Operations

Buffer

Memory

File

Data Sieving Write Transfers

 Data sieving for writes is more
complicated
– Must read the entire region

first
– Then make changes in buffer
– Then write the block back

 Requires locking in the file
system
– Can result in false sharing

(interleaved access)
 PFS supporting noncontiguous

writes is preferred

27

28

Collective I/O and Two-Phase I/O

 Problems with independent, noncontiguous access
– Lots of small accesses
– Independent data sieving reads lots of extra data, can exhibit false sharing

 Idea: Reorganize access to match layout on disks
– Single processes use data sieving to get data for many
– Often reduces total I/O through sharing of common blocks

 Second “phase” redistributes data to final destinations
 Two-phase writes operate in reverse (redistribute then I/O)

– Typically read/modify/write (like data sieving)
– Overhead is lower than independent access because there is little or no false

sharing

 Note that two-phase is usually applied to file regions, not to actual blocks

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/OInitial State Phase 2: Redistribution

Two-Phase I/O Algorithms

29

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based
on Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

Impact of Two-Phase I/O Algorithms

 This graph shows the performance
for the S3D combustion code,
writing to a single file.

 Aligning with lock boundaries
doubles performance over default
“even” algorithm.

 “Group” algorithm similar to server-
aligned algorithm on last slide.

 Testing on Mercury, an IBM IA64
system at NCSA, with 54 servers
and 512KB stripe size.

30

W.K. Liao and A. Choudhary, “Dynamically
Adapting File Domain Partitioning Methods for
Collective
I/O Based on Underlying Parallel File System
Locking Protocols,” SC2008, November, 2008.

S3D Turbulent Combustion Code

 S3D is a turbulent
combustion application
using a direct numerical
simulation solver from
Sandia National
Laboratory

 Checkpoints consist of
four global arrays

– 2 3-dimensional

– 2 4-dimensional

– 50x50x50 fixed
subarrays

31

Thanks to Jackie Chen (SNL), Ray Grout (SNL), and Wei-Keng Liao (NWU) for providing the S3D I/O benchmark,
Wei-Keng Liao for providing this diagram.

Impact of Optimizations on S3D I/O

32

Coll.
Buffering
and Data
Sieving
Disabled

Data Sieving
Enabled

Coll.
Buffering
Enabled (incl.
Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-IO writes 64 64 64

Unaligned in
file

102,399 80 4

Total written
(MB)

6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO
time per proc
(sec)

1426.47 4.82 0.60

33

MPI-IO Wrap-Up

 MPI-IO provides a rich interface allowing us to describe
– Noncontiguous accesses in memory, file, or both
– Collective I/O

 This allows implementations to perform many transformations
that result in better I/O performance

 Also forms solid basis for high-level I/O libraries
– But they must take advantage of these features!

The Parallel netCDF
Interface and File Format

Thanks to Wei-Keng Liao and
Alok Choudhary (NWU) for their
help in the development of
PnetCDF.

34

35

Higher Level I/O Interfaces

 Provide structure to files
– Well-defined, portable formats
– Self-describing
– Organization of data in file
– Interfaces for discovering contents

 Present APIs more appropriate for computational science
– Typed data
– Noncontiguous regions in memory and file
– Multidimensional arrays and I/O on subsets of these arrays

 Both of our example interfaces are implemented on top of MPI-IO

36

Parallel netCDF (PnetCDF)

 Based on original “Network Common Data Format” (netCDF) work from
Unidata
– Derived from their source code

 Data Model:
– Collection of variables in single file
– Typed, multidimensional array variables
– Attributes on file and variables

 Features:
– C and Fortran interfaces
– Portable data format (identical to netCDF)
– Noncontiguous I/O in memory using MPI datatypes
– Noncontiguous I/O in file using sub-arrays
– Collective I/O

 Unrelated to netCDF-4 work (More about netCDF-4 later)

Data Layout in netCDF Files

37

Record Variables in netCDF

 Record variables are defined to have a
single “unlimited” dimension
– Convenient when a dimension size is

unknown at time of variable creation

 Record variables are stored after all the
other variables in an interleaved format
– Using more than one in a file is likely to

result in poor performance due to number
of noncontiguous accesses

38

39

Storing Data in PnetCDF

 Create a dataset (file)
– Puts dataset in define mode
– Allows us to describe the contents

• Define dimensions for variables
• Define variables using dimensions
• Store attributes if desired (for variable or dataset)

 Switch from define mode to data mode to write variables
 Store variable data
 Close the dataset

40

Example: FLASH Astrophysics

 FLASH is an astrophysics code for
studying events such as
supernovae
– Adaptive-mesh hydrodynamics

– Scales to 1000s of processors

– MPI for communication

 Frequently checkpoints:
– Large blocks of typed variables

from all processes

– Portable format

– Canonical ordering (different than
in memory)

– Skipping ghost cells Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

41

Example: FLASH with PnetCDF

 FLASH AMR structures do not map directly to netCDF
multidimensional arrays

 Must create mapping of the in-memory FLASH data structures into
a representation in netCDF multidimensional arrays

 Chose to
– Place all checkpoint data in a single file
– Impose a linear ordering on the AMR blocks

• Use 4D variables

– Store each FLASH variable in its own netCDF variable
• Skip ghost cells

– Record attributes describing run time, total blocks, etc.

42

Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;
/* create dataset (file) */
status = ncmpi_create(MPI_COMM_WORLD, filename,

NC_CLOBBER, hints, &file_id);
/* define dimensions */
status = ncmpi_def_dim(ncid, "dim_tot_blks",

tot_blks, &dim_tot_blks);
status = ncmpi_def_dim(ncid, "dim_nxb",

nzones_block[0], &dim_nxb);
status = ncmpi_def_dim(ncid, "dim_nyb",

nzones_block[1], &dim_nyb);
status = ncmpi_def_dim(ncid, "dim_nzb",

nzones_block[2], &dim_nzb);

Each dimension gets
a unique reference

43

Creating Variables

int dims = 4, dimids[4];
int varids[NVARS];
/* define variables (X changes most quickly) */
dimids[0] = dim_tot_blks;
dimids[1] = dim_nzb;
dimids[2] = dim_nyb;
dimids[3] = dim_nxb;
for (i=0; i < NVARS; i++) {

status = ncmpi_def_var(ncid, unk_label[i],
NC_DOUBLE, dims, dimids, &varids[i]);

}

Same dimensions used
for all variables

44

Storing Attributes

/* store attributes of checkpoint */
status = ncmpi_put_att_text(ncid, NC_GLOBAL,

"file_creation_time", string_size,
file_creation_time);

status = ncmpi_put_att_int(ncid, NC_GLOBAL,
"total_blocks", NC_INT, 1, tot_blks);

status = ncmpi_enddef(file_id);

/* now in data mode … */

45

Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */
size_t start_4d[4], count_4d[4];
start_4d[0] = global_offset; /* different for each process */
start_4d[1] = start_4d[2] = start_4d[3] = 0;
count_4d[0] = local_blocks;
count_4d[1] = nzb; count_4d[2] = nyb; count_4d[3] = nxb;
for (i=0; i < NVARS; i++) {

/* ... build datatype “mpi_type” describing values of a single
variable ... */

/* collectively write out all values of a single variable */
ncmpi_put_vara_all(ncid, varids[i], start_4d, count_4d,

unknowns, 1, mpi_type);
}
status = ncmpi_close(file_id);

Typical MPI buffer-count-
type tuple

46

Inside PnetCDF Define Mode

 In define mode (collective)
– Use MPI_File_open to create file at create time
– Set hints as appropriate (more later)
– Locally cache header information in memory

• All changes are made to local copies at each process

 At ncmpi_enddef
– Process 0 writes header with MPI_File_write_at
– MPI_Bcast result to others
– Everyone has header data in memory, understands placement of all

variables
• No need for any additional header I/O during data mode!

47

Inside PnetCDF Data Mode

 Inside ncmpi_put_vara_all (once per variable)
– Each process performs data conversion into internal buffer
– Uses MPI_File_set_view to define file region

• Contiguous region for each process in FLASH case

– MPI_File_write_all collectively writes data

 At ncmpi_close
– MPI_File_close ensures data is written to storage

 MPI-IO performs optimizations
– Two-phase possibly applied when writing variables

 MPI-IO makes PFS calls
– PFS client code communicates with servers and stores data

48

PnetCDF Wrap-Up

 PnetCDF gives us
– Simple, portable, self-describing container for data
– Collective I/O
– Data structures closely mapping to the variables described

 If PnetCDF meets application needs, it is likely to give good
performance
– Type conversion to portable format does add overhead

 Some limits on (CDF-2) file format:
– Fixed-size variable: < 4 GiB
– Per-record size of record variable: < 4 GiB
– 232 -1 records
– Work completed to relax these limits (CDF-5): still need to port to

serial netcdf

The HDF5 Interface and File
Format

49

50

HDF5

 Hierarchical Data Format, from the HDF Group (formerly of NCSA)
 Data Model:

– Hierarchical data organization in single file
– Typed, multidimensional array storage
– Attributes on dataset, data

 Features:
– C, C++, and Fortran interfaces
– Portable data format
– Optional compression (not in parallel I/O mode)
– Data reordering (chunking)
– Noncontiguous I/O (memory and file) with hyperslabs

51

Dataset “temp”

HDF5 File “chkpt007.h5”

Group “/”

Group “viz”
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 20)

attributes = …

10 (data)

20

HDF5 Files

 HDF5 files consist of groups, datasets, and attributes
– Groups are like directories, holding other groups and datasets

– Datasets hold an array of typed data
• A datatype describes the type (not an MPI datatype)

• A dataspace gives the dimensions of the array

– Attributes are small datasets associated with the file, a group, or
another dataset

• Also have a datatype and dataspace

• May only be accessed as a unit

52

HDF5 Data Chunking

 Apps often read subsets of arrays (subarrays)
 Performance of subarray access depends in part on how data is laid

out in the file
– e.g. column vs. row major

 Apps also sometimes store sparse data sets
 Chunking describes a reordering of array data

– Subarray placement in file determined lazily
– Can reduce worst-case performance for subarray access
– Can lead to efficient storage of sparse data

 Dynamic placement of chunks in file requires coordination
– Coordination imposes overhead and can impact performance

Example: FLASH Particle I/O with HDF5

 FLASH “Lagrangian particles” record location,
characteristics of reaction
– Passive particles don’t exert forces; pushed

along but do not interact
 Particle data included in checkpoints, but not in

plotfiles; dump particle data to separate file
 One particle dump file per time step

– i.e., all processes write to single particle file
 Output includes application info, runtime info in

addition to particle data

53

Block=30;
Pos_x=0.65;
Pos_y=0.35;
Pos_z=0.125;
Tag=65;
Vel_x=0.0;
Vel_y=0.0;
vel_z=0.0;

Typical particle data

54

Storing Labels for Particles

int string_size = OUTPUT_PROP_LENGTH;
hsize_t dims_2d[2] = {npart_props, string_size};
hid_t dataspace, dataset, file_id, string_type;

/* store string creation time attribute */
string_type = H5Tcopy(H5T_C_S1);
H5Tset_size(string_type, string_size);
dataspace = H5Screate_simple(2, dims_2d, NULL);
dataset = H5Dcreate(file_id, “particle names",

string_type, dataspace, H5P_DEFAULT);
if (myrank == 0) {

status = H5Dwrite(dataset, string_type, H5S_ALL, H5S_ALL,
H5P_DEFAULT, particle_labels);

}

get a copy of the
string type and

resize it

Write out
all 8
labels in
one call

Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

55

Storing Particle Data with Hyperslabs (1 of 2)

hsize_t dims_2d[2];

/* Step 1: set up dataspace –
 describe global layout */

dims_2d[0] = total_particles;
dims_2d[1] = npart_props;

dspace = H5Screate_simple(2, dims_2d, NULL);
dset = H5Dcreate(file_id, “tracer particles”,

H5T_NATIVE_DOUBLE, dspace, H5P_DEFAULT);

Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

local_np = 2,
part_offset = 3,
total_particles = 10,
Npart_props = 8

56

Storing Particle Data with Hyperslabs (2 of 2)
hsize_t start_2d[2] = {0, 0},
 stride_2d[1] = {1, 1};
hsize_t count_2d[2] = {local_np,
 npart_props};

/* Step 2: setup hyperslab for
 dataset in file */

start_2d[0] = part_offset; /* different for each process
*/
status = H5Sselect_hyperslab(dspace,
 H5S_SELECT_SET,
 start_2d, stride_2d, count_2d, NULL);

dataspace from
last slide

local_np = 2,
part_offset = 3,
total_particles = 10,
Npart_props = 8

- Hyperslab selection similar to MPI-IO file view
- Selections don’t overlap in this example (would be bad if writing!)
- H5SSelect_none() if no work for this process

57

Collectively Writing Particle Data

/* Step 1: specify collective I/O */
dxfer_template = H5Pcreate(H5P_DATASET_XFER);
ierr = H5Pset_dxpl_mpio(dxfer_template,

H5FD_MPIO_COLLECTIVE);

/* Step 2: perform collective write */
status = H5Dwrite(dataset,

 H5T_NATIVE_DOUBLE,
 memspace,
 dspace,
 dxfer_template,
 particles);

“P” is for property list;
tuning parameters

dataspace
describing
memory,

 could also use a
hyperslab

dataspace describing
region in file, with

hyperslab from previous
two slides

Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

58

Inside HDF5

 MPI_File_open used to open file
 Because there is no “define” mode, file layout is

determined at write time
 In H5Dwrite:

– Processes communicate to determine file layout
• Process 0 performs metadata updates

– Call MPI_File_set_view
– Call MPI_File_write_all to collectively write

• Only if this was turned on (more later)
 Memory hyperslab could have been used to define

noncontiguous region in memory
 In FLASH application, data is kept in native format and

converted at read time (defers overhead)
– Could store in some other format if desired

 At the MPI-IO layer:
– Metadata updates at every write are a bit of a bottleneck

• MPI-IO from process 0 introduces some skew

Other High-Level I/O libraries

 NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
– netCDF API with HDF5 back-end

 ADIOS: http://adiosapi.org
– Configurable (xml) I/O approaches

 SILO: https://wci.llnl.gov/codes/silo/
– A mesh and field library on top of HDF5 (and others)

 H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/
– simplified HDF5 API for particle simulations

 GIO: https://svn.pnl.gov/gcrm
– Targeting geodesic grids as part of GCRM

 PIO:
– climate-oriented I/O library; supports raw binary, parallel-netcdf, or

serial-netcdf (from master)

 … Many more: my point: it's ok to make your own.

http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm

Lightweight Application Characterization
with Darshan

60

Thanks to Phil Carns (
carns@mcs.anl.gov) for
providing background
material on Darshan.

mailto:carns@mcs.anl.gov

Darshan Goals

 Capture application-level behavior
– Both POSIX and MPI-IO

– Portable across file systems and hardware

 Transparent to users
– Negligible performance impact

– No source code changes

 Leadership-class scalability
– 100,000+ processes

 Scalability tactics:
– Bounded memory footprint

– Minimize redundant information

– Avoid shared resources at run time

– Scalable algorithms to aggregate information

61

The Darshan Approach

 Use PMPI and ld wrappers to intercept I/O functions
– Requires re-linking, but no code modification

– Can be transparently included in mpicc

– Compatible with a variety of compilers

 Record statistics independently at each process
– Compact summary rather than verbatim record

– Independent data for each file

 Collect, compress, and store results at shutdown time
– Aggregate shared file data using custom MPI reduction operator

– Compress remaining data in parallel with zlib

– Write results with collective MPI-IO

– Result is a single gzip-compatible file containing characterization
information

62

Example Statistics (per file)

 Counters:

– POSIX open, read, write, seek, stat, etc.

– MPI-IO nonblocking, collective, independent, etc.

– Unaligned, sequential, consecutive, strided access

– MPI-IO datatypes and hints

 Histograms:

– access, stride, datatype, and extent sizes

 Timestamps:

– open, close, first I/O, last I/O

 Cumulative bytes read and written

 Cumulative time spent in I/O and metadata operations

 Most frequent access sizes and strides

 Darshan records 150 integer or floating point parameters per file, plus job level
information such as command line, execution time, and number of processes.

63

Job Summary

64

 Job summary tool shows
characteristics “at a glance”

 MADBench2 example
 Shows time spent in read, write,

and metadata
 Operation counts, access size

histogram, and access pattern

 Early indication of I/O behavior
and where to explore in further

Chombo I/O Benchmark

 Why does the I/O take so long in this case?
 Why isn’t it busy writing data the whole time?

 Checkpoint writes from AMR
framework

 Uses HDF5 for I/O
 Code base is complex
 512 processes
 18.24 GB output file

65

Chombo I/O Benchmark

66

 Consecutive: 49.25%
 Sequential: 99.98%
 Unaligned in file: 99.99%
 Several recurring regular stride patterns

 Many write operations, with none over 1 MB in size

 Most common access size is 28,800 (occurs 15622 times)

 No MPI datatypes or collectives

 All processes frequently seek forward between writes

Darshan Summary

 Scalable tools like Darshan can yield useful insight
– Identify characteristics that make applications successful

– Identify problems to address through I/O research

 Petascale performance tools require special considerations
– Target the problem domain carefully to minimize amount of data

– Avoid shared resources

– Use collectives where possible

 For more information:
http://www.mcs.anl.gov/research/projects/darshan

67

I/O in Parallel Volume
Rendering

Thanks to Tom Peterka (ANL)
and Hongfeng Yu and Kwan-Liu
Ma (UC Davis) for providing the
code on which this material is
based.

68

69

Parallel Volume Rendering

 Supernova model with focus
on core collapse

 Parallel rendering techniques
scale to 16k cores on Argonne
Blue Gene/P

 Produce a series of time steps
 11203 elements (~1.4 billion)
 Structured grid
 Simulated and rendered on

multiple platforms, sites
 I/O time now largest

component of runtime

of Cores

70

The I/O Code (essentially):
 MPI_Init(&argc, &argv);
 ncmpi_open(MPI_COMM_WORLD, argv[1], NC_NOWRITE,
 info, &ncid));
 ncmpi_inq_varid(ncid, argv[2], &varid);
 buffer =calloc(sizes[0]*sizes[1]*sizes[2],sizeof(float));
 for (i=0; i<blocks; i++) {
 decompose(rank, nprocs, ndims, dims, starts, sizes);
 ncmpi_get_vara_float_all(ncid, varid,
 starts, sizes, buffer);
 }
 ncmpi_close(ncid));
 MPI_Finalize();

 Read-only workload: no switch between define/data mode
 Omits error checking, full use of inquire (ncmpi_inq_*) routines
 Collective I/O of noncontiguous (in file) data
 “black box” decompose function:

– divide 1120^3 elements into roughly equal mini-cubes

– “face-wise” decomposition ideal for I/O access, but poor fit for volume
rendering algorithms

71

Volume Rendering and pNetCDF

 Original data: netCDF formatted
 Two approaches for I/O

– Pre-processing: extract each variable to separate file
• Lengthy, duplicates data

– Native: read data in parallel, on-demand from dataset
• Skip preprocessing step but slower than raw

 Why so slow?
– 5 large “record” variables in

a single netcdf file
• Interleaved on per-record basis

– Bad interaction with default
MPI-IO parameters

Record variable interleaving is
performed in N-1 dimension slices,
where N is the number of dimensions
in the variable.

72

Access Method Comparison

 MPI-IO hints matter
 HDF5: many small metadata

reads
 Interleaved record format:

bad news

API time (s) accesses read data (MB) efficency

MPI (raw data) 11.388 960 7126 75.20%

PnetCDF (no hints) 36.030 1863 24200 22.15%

PnetCDF (hints) 18.946 2178 7848 68.29%

HDF5 16.862 23450 7270 73.72%

PnetCDF (beta) 13.128 923 7262 73.79%

File Access Three Ways

No hints: reading in
way too much data

With tuning: no wasted
data; file layout not
ideal

HDF5 & new
pnetcdf: no
wasted data;
larger request
sizes

73

I/O in FLASH

● Worked with FLASH folks to identify ways to make I/O even better

● Change file format

● Lump all FLASH variables (4-D) into one bigger (5-D) variable in file

● Build up great big MPI datatype (or HDF5 hyperslab) describing all variables

● Dump I/O with a single call

● Good for I/O, but change in file format requires change in analysis and viz tools

● Try out parallel-netCDF non-blocking API

● Not asynchronous.

● Instead, combines operations at “wait”

Parallel-netCDF Nonblocking API

● Similar rules as MPI non-blocking routines

● All work happens in wait

data[0] = rank + 1000;
ncmpi_iput_vara_int_all(ncfile, varid1, &start, &count,
 &(data[0]), count,&(requests[0]));

data[1] = rank + 10000;
/* Note: cannot touch buffer until wait completed */
ncmpi_iput_vara_int_all(ncfile, varid2, &start, &count,
 &(data[1]), count,&(requests[1]));

ncmpi_wait_all(ncid, 2, requests statuses);

FLASH with traditional (blocking) API

 64k cores
 16k nodes
 4 Intrepid (ANL BlueGene/P)

racks
 92 GB checkpoint file

– 10 variables
– Double precision

 14 GB plotfile
– 3 variables
– Single precision

 Plotfile: 48.19 seconds (1.16
GB/sec)

 Checkpoint: 179.1 seconds
(2.05 GB/sec)

FLASH with non-blocking API

 Better application performance despite more (total) time in MPI-IO
 Parallel-netcdf overhead is bupkis
 Fewer but larger operations
 Plotfile rate: 1.4 GB/sec; Checkpoint: 6.8

Wrapping Up

 We've covered a lot of ground in a short time
– Very low-level, serial interfaces

– High-level, hierarchical file formats

 Storage is a complex hardware/software system

 There is no magic in high performance I/O
– Lots of software is available to support computational science workloads

at scale

– Knowing how things work will lead you to better performance

 Using this software (correctly) can dramatically improve
performance (execution time) and productivity (development
time)

78

79

Printed References

 John May, Parallel I/O for High Performance
Computing, Morgan Kaufmann, October 9, 2000.
– Good coverage of basic concepts, some MPI-IO, HDF5, and

serial netCDF
– Out of print?

 William Gropp, Ewing Lusk, and Rajeev Thakur,
Using MPI-2: Advanced Features of the Message
Passing Interface, MIT Press, November 26, 1999.
– In-depth coverage of MPI-IO API, including a very detailed

description of the MPI-IO consistency semantics

80

On-Line References (1 of 4)

 netCDF and netCDF-4
– http://www.unidata.ucar.edu/packages/netcdf/

 PnetCDF
– http://www.mcs.anl.gov/parallel-netcdf/

 ROMIO MPI-IO
– http://www.mcs.anl.gov/romio/

 HDF5 and HDF5 Tutorial
– http://www.hdfgroup.org/

– http://hdf.ncsa.uiuc.edu/HDF5/

– http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html

 POSIX I/O Extensions
– http://www.opengroup.org/platform/hecewg/

 Darshan I/O Characterization Tool
– http://www.mcs.anl.gov/research/projects/darshan

81

On-Line References (2 of 4)

 PVFS
http://www.pvfs.org/

 Panasas
http://www.panasas.com/

 Lustre
http://www.lustre.org/

 GPFS
http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/

http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/

82

On-Line References (3 of 4)

 LLNL I/O tests (IOR, fdtree, mdtest)
– http://www.llnl.gov/icc/lc/siop/downloads/download.html

 Parallel I/O Benchmarking Consortium (noncontig, mpi-tile-io, mpi-
md-test)
– http://www.mcs.anl.gov/pio-benchmark/

 FLASH I/O benchmark
– http://www.mcs.anl.gov/pio-benchmark/

– http://flash.uchicago.edu/~jbgallag/io_bench/ (original version)

 b_eff_io test
– http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/

 mpiBLAST
– http://www.mpiblast.org

On Line References (4 of 4)

 NFS Version 4.1
– draft-ietf-nfsv4-minorversion1-26.txt
– draft-ietf-nfsv4-pnfs-obj-09.txt
– draft-ietf-nfsv4-pnfs-block-09.txt

 pNFS Problem Statement
– Garth Gibson (Panasas), Peter Corbett (Netapp), Internet-draft, July

2004

– http://www.pdl.cmu.edu/pNFS/archive/gibson-pnfs-problem-
statement.html

 Linux pNFS Kernel Development
– http://www.citi.umich.edu/projects/asci/pnfs/linux

83

84

Acknowledgements

This work is supported in part by U.S. Department of Energy Grant
DE-FC02-01ER25506, by National Science Foundation Grants EIA-
9986052, CCR-0204429, and CCR-0311542, and by the U.S.
Department of Energy under Contract DE-AC02-06CH11357.

Thanks to Rajeev Thakur (ANL) and Bill Loewe (Panasas) for their help
in creating this material and presenting this tutorial in prior years.

	Making the Most of the I/O stack
	Applications, Data Models, and I/O
	Large-Scale Data Sets
	Disk Access Rates over Time
	Challenges in Application I/O
	I/O for Computational Science
	Parallel File System
	Parallel File Systems
	Contiguous and Noncontiguous I/O
	Locking in Parallel File Systems
	Locking and Concurrent Access
	I/O Forwarding
	I/O Middleware
	Independent and Collective I/O
	High Level Libraries
	I/O Hardware and Software on Blue Gene/P
	What we’ve said so far…
	The MPI-IO Interface
	MPI-IO
	Example: Visualization Staging
	MPI Subarray Datatype
	Opening the File, Defining RGB Type
	Defining Tile Type Using Subarray
	Reading Noncontiguous Data
	Under the Covers of MPI-IO
	Noncontiguous I/O: Data Sieving
	Data Sieving Write Operations
	Collective I/O and Two-Phase I/O
	Two-Phase I/O Algorithms
	Impact of Two-Phase I/O Algorithms
	S3D Turbulent Combustion Code
	Impact of Optimizations on S3D I/O
	MPI-IO Wrap-Up
	The Parallel netCDF Interface and File Format
	Higher Level I/O Interfaces
	Parallel netCDF (PnetCDF)
	Data Layout in netCDF Files
	Record Variables in netCDF
	Storing Data in PnetCDF
	Example: FLASH Astrophysics
	Example: FLASH with PnetCDF
	Defining Dimensions
	Creating Variables
	Storing Attributes
	Writing Variables
	Inside PnetCDF Define Mode
	Inside PnetCDF Data Mode
	PnetCDF Wrap-Up
	The HDF5 Interface and File Format
	HDF5
	HDF5 Files
	HDF5 Data Chunking
	Example: FLASH Particle I/O with HDF5
	Storing Labels for Particles
	Storing Particle Data with Hyperslabs (1 of 2)
	Storing Particle Data with Hyperslabs (2 of 2)
	Collectively Writing Particle Data
	Inside HDF5
	Slide 59
	Lightweight Application Characterization with Darshan
	Darshan Goals
	The Darshan Approach
	Example Statistics (per file)
	Job Summary
	Chombo I/O Benchmark
	Slide 66
	Darshan Summary
	I/O in Parallel Volume Rendering
	Parallel Volume Rendering
	The I/O Code (essentially):
	Volume Rendering and pNetCDF
	Access Method Comparison
	File Access Three Ways
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Wrapping Up
	Printed References
	On-Line References (1 of 4)
	On-Line References (2 of 4)
	On-Line References (3 of 4)
	On Line References (4 of 4)
	Acknowledgements

