
Azure MapReduce

Thilina Gunarathne

Salsa group, Indiana University



Agenda

• Recap of Azure Cloud Services

• Recap of MapReduce

• Azure MapReduce Architecture

• Pairwise distance alignment implementation

• Next steps



Cloud Computing

• On demand computational services over web
– Backed by massive commercial infrastructures giving 

economies of scale
– Spiky compute needs of the scientists

• Horizontal scaling with no additional cost
– Increased throughput

• Cloud infrastructure services
– Storage, messaging, tabular storage
– Cloud oriented services guarantees
– Virtually unlimited scalability

• Future seems to be CLOUDY!!!



Azure Platform

• Windows Azure Compute

– .net platform as a service

– Worker roles & web roles

• Azure Storage

– Blobs

– Queues

– Table

• Development SDK, fabric and storage



MapReduce

• Automatic parallelization & distribution

• Fault-tolerant

• Provides status and monitoring tools

• Clean abstraction for programmers
– map  (in_key, in_value) -> 

(out_key, intermediate_value) list

– reduce (out_key, intermediate_value list) ->

out_value list



Motivation

• Currently no parallel programming framework 
on Azure

– No MPI, No Dryad

• Well known, easy to use programming model

• Cloud nodes are not as reliable as 
conventional cluster nodes



Azure MapReduce Concepts

• Take advantage of the cloud services
– Distributed services, Unlimited scalability 
– Backed by industrial strength data centers and 

technologies

• Decentralized control
• Dynamically scale up/down
• Eventual consistency
• Large latencies

– Coarser grained map tasks

• Global queue based scheduling



1

1.Client driver loads the map & reduce tasks to the queues



2

2. Map workers retrieve map tasks from the queue



3

3. Map workers download data from the Blob storage and start processing



4

4. Reduce workers pick the tasks from the queue and start 
monitoring the reduce task  tables



5

5. Finished map tasks upload the results to Blob storage. Add 
entries to the respective reduce task tables.



6

6. Reduce tasks download the intermediate data products



7

7. Start reducing when all the map tasks are finished and when a 
reduce task is finished downloading the intermediate data products



Azure MapReduce Architecture

• Client API and driver

• Map tasks

• Reduce tasks

• Intermediate data transfer

• Monitoring

• Configurations



Fault tolerance

• Use the visibility timeout of the queues
– Currently maximum is 3 hours

– Delete the message from the queue only after 
everything is successful

– Execution, upload, update status

• Tasks will rerun when timeout happens
– Ensures eventual completion

– Intermediate data are persisted in blob storage

– Retry up to 3 times

• Many retries in service invocations



Apache Hadoop

[24] /(Google MR)

Microsoft Dryad [25] Twister [19] Azure Map 

Reduce/Twister 

Programming 

Model

MapReduce DAG execution, 

Extensible to 

MapReduce and other 

patterns

Iterative 

MapReduce

MapReduce-- will 

extend to Iterative 

MapReduce

Data Handling HDFS (Hadoop

Distributed File 

System)

Shared Directories & 

local disks 

Local disks and 

data management 

tools

Azure Blob Storage 

Scheduling Data Locality; Rack 

aware, Dynamic 

task scheduling 

through global 

queue

Data locality;

Network

topology based

run time graph

optimizations; Static task 

partitions

Data Locality; 

Static task 

partitions

Dynamic task 

scheduling through 

global queue

Failure Handling Re-execution of 

failed tasks; 

Duplicate execution 

of slow tasks

Re-execution of failed 

tasks; Duplicate 

execution of slow tasks

Re-execution of 

Iterations

Re-execution of 

failed tasks; 

Duplicate execution 

of slow tasks

Environment Linux Clusters, 

Amazon Elastic Map 

Reduce on EC2

Windows HPCS cluster Linux Cluster

EC2

Window Azure 

Compute, Windows 

Azure Local 

Development 

Fabric

Intermediate 

data transfer

File, Http File, TCP pipes, shared-

memory FIFOs

Publish/Subscribe 

messaging

Files, TCP



Why Azure Services

• Virtually unlimited scalable distributed 
services

• No need to install software stacks

– In fact you can’t 

– Eg: NaradaBrokering, HDFS, Database

• Zero maintenance

– Let the platform take care of you

• Availability guarantees



API

• ProcessMapRed(jobid, container, params, 
numReduceTasks, storageAccount, 
mapQName, reduceQName,List
mapTasks)

• Map(key, value, programArgs, Dictionary 
outputCollector)

• Reduce(key, List values, programArgs, Dictionary 
outputCollector)



Develop applications using Azure 
MapReduce

• Local debugging using Azure development 
fabric

• DistributedCache

– Bundle with Azure Package

• Compile in release mode before creating the 
package.

• Deploy using Azure web interface

• Errors logged to a Azure Table



SWG Pairwise Distance Alignment

• SmithWaterman-GOTOH

• Pairwise sequence alignment

– Align each sequence with all the other sequences



Application architecture
Block decomposition

1

(1-100)

2

(101-200)

3

(201-300)

4

(301-400)

1

(1-100)
M1 M2 from M6 M3 Reduce 1 

2

(101-200)
from M2 M4 M5 from M9

Reduce 2

3

(201-300)
M6 from M5 M7 M8

Reduce 3

4

(301-400)
from M3 M9 from M8 M10

Reduce 4



AzureMR SWG Performance
10k Sequences

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 32 64 96 128 160

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Number of Azure Small Instances

Execution Time(s)



AzureMR SWG Performance
10k Sequences

0

1

2

3

4

5

6

7

0 32 64 96 128 160

A
lig

n
m

e
n

t 
Ti

m
e

 (
m

s)

Number of Azure Small Instances

Time Per Alignment Per Instance



AzureMR SWG Performance on 
Different Instance Types

0

100

200

300

400

500

600

700

Small Medium Large ExtraLarge

Ex
e

cu
ti

o
n

 T
im

e
 (s

)

Instance Type

Execution Time



AzureMR SWG Performance on 
Different Data Sizes

0

1

2

3

4

5

6

7

8

4000 5000 6000 7000 8000 9000 10000

Ti
m

e
 fo

r 
an

 A
ct

u
al

 A
li

ge
m

e
n

t (
m

s)

Number of Sequences

Time Per Alignment Per Core (ms)



Next Steps

• In the works

– Monitoring web interface

– Alternative intermediate data communication 
mechanisms

– Public release

• Future plans

– AzureTwister

• Iterative MapReduce



Thanks!!

• Questions? 



References

• J. Dean, and S. Ghemawat, “MapReduce: simplified data 
processing on large clusters,” Commun. ACM, vol. 51, no. 1, 
pp. 107-113., 2008.

• J.Ekanayake, H.Li, B.Zhang et al., “Twister: A Runtime for 
iterative MapReduce,” in Proceedings of the First International 
Workshop on MapReduce and its Applications of ACM HPDC 
2010 conference June 20-25, 2010, Chicago,  Illinois, 2010.

• Cloudmapreduce, 
http://sites.google.com/site/huanliu/cloudmapreduce.pdf

• "Apache Hadoop," http://hadoop.apache.org/

• M. Isard, M. Budiu, Y. Yu et al., "Dryad: Distributed data-
parallel programs from sequential building blocks." pp. 59-72.

http://sites.google.com/site/huanliu/cloudmapreduce.pdf
http://hadoop.apache.org/
http://hadoop.apache.org/


Acknowledgments

• Prof. Geoffrey Fox, Dr. Judy Qiu and the Salsa 
group

• Dr. Ying Chen and Alex De Luca from IBM 
Almaden Research Center

• Virtual School Organizers


