
MIC Lab Page 1

Lab MIC Offload Experiments 11/13/13

 offload_lab.tar

 TACC

pg. Subject Purpose directory

1 3
5

Offload, Begin (C)
 (F90)

Compile and Run (CPU, MIC, Offload) hello

2 7 Offload, Data Optimize Offload Data Transfers transfer

3 10 Offload, Async OMP Concurrent CPU+MIC Execution stencil

MIC Lab Page 2

Before you begin, create 2 or 3 windows on a login node using:

 login: ssh -Y <my_login_name>@stampede.tacc.utexas.edu

If you have not idev’d to a compute node already, create a session

with the following command. ONLY Create ONE IDEV SESSION!!!!

idev session: login4% idev
 ...

 C558-100% this is your compute-node ip*

If you exit this window your idev session is aborted.

Do all of your work on a compute node (your own development node!). In

the other (non-idev) windows ssh over to the compute node.

 other windows: login4% ssh –Y c558-100 use your node ip

 ...

 c558-100%

Select one of your windows for doing the exercises, and use the

other for running top and other utilities (in some exercises). We

won’t show the prompt in commands from now on—assume you

are on a compute node unless otherwise stated.

Untar files into $HOME directory:

 get files: tar –xvf ~train00/offload_lab.tar
 cd mic

 * Your new prompt from idev is your interactive compute-node ip.

 e.g. if your prompt is: c557-001% Your compute-node ip is c557-001.

 You can use this window for executing MPI code with ibrun (or any

 window in which you ssh’d to this node)—it has the right

 MPI environment. Also, use it for editing, compiling, etc.

 The compute node will be dedicated to you for your use (30 min).

When you need to access the MIC from a compute node, execute:

 mic access: ssh mic0 we will call this a mic window

Do the exercises in the order of the listing on the previous page.

Instructions follow:

MIC Lab Page 3

1 README hello for C offload hello C 1

What you will do: (See next section for INSTRUCTIONS.)

Rather than putting the compile commands in makefiles, we have you

type out the commands so that you can see how simple it is to

compile for all (most) cases.

1. Look over the code for the cases:

 a.)

hello.c i.) Reduction, run on host

hello.c ii.) Reduction, run natively on mic

hello_off.c iii.) Reduction, run on host and offload to mic

 b.)

hello_omp.c i.) OMP Reduction, run on host

hello_omp.c ii.) OMP Reduction, run natively on mic

hello_omp_off.c iii.) OMP Reduction, run on host & offload to mic

2. Compile and Run Cases:

INSTRUCTION DETAILS

1.) Make sure you have 2 windows open on a compute node on your laptop

and login to stampede in both. (See instruction on 1
st
 page). In

one of the windows ssh to the MIC (ssh mic0)for executing commands

directly on the MIC (native execution)—this is your MIC window.

In the compute node window and the mic window go to the

offload_hello/C directory:

 cd offload_lab/hello/C

2.) The “hello” toy codes do a simple reduction. Compile them.

To run natively on the MIC you must compile with –mmic. No

options are required for offloading.

icc hello.c -o a.out.cpu

icc -mmic hello.c -o a.out.mic

icc hello_off.c -o a.out.off

MIC Lab Page 4

 On the host (compute node window) execute:

./a.out.cpu

./a.out.off

./a.out.mic (this will run on the MIC!)

 Or, in the MIC window execute the MIC binary:

./a.out.mic

3.) The omp “toy” codes do a simple OpenMP reduction. Compile them:

icc -openmp hello_omp.c -o a.out.omp_cpu

icc -mmic -openmp hello_omp.c -o a.out.omp_mic

icc -openmp hello_omp_off.c -o a.out.omp_off

 On the host (compute node window) execute:

export OMP_NUM_THREADS=16

./a.out.omp_cpu #Run code on CPU -- faster

export MIC_PREFIX=MIC #Set up MIC env with MIC_ prefixed

export MIC_OMP_NUM_THREADS=240 #variables.

./a.out.omp_off #Run offloads on MIC

4.) On the MIC (in the mic window*) execute:

 (On the MIC the prompt is your present working directory.)

(No need for MIC_ prefix on MIC when executing natively!)

 ON THE MIC* execute:

export OMP_NUM_THREADS=244

./a.out.omp_mic

5.) While you are on the MIC, kick the tires on BusyBox.

cat /proc/cpuinfo, etc. (cat /proc/cpuinfo | grep proc)

6.) Rerun cases above with a different number of threads on the host

and the MIC.

MIC Lab Page 5

1 README hello for F90 offload hello F90 1

What you will do: (See next section for INSTRUCTIONS.)

Rather than putting the compile commands in makefiles, we have you

type out the commands so that you can see how simple it is to

compile for all cases.

1. Look over the Code for the cases:

 a.)

hello.F90 i.) Reduction, run on host

hello.F90 ii.) Reduction, run natively on mic

hello_off.F90 iii.) Reduction, run on host and offload to mic

 b.)

hello_omp.F90 i.) OMP Reduction, run on host

hello_omp.F90 ii.) OMP Reduction, run natively on mic

hello_omp_off.F90 iii.) OMP Reduction, run on host & offload to mic

2. Compile and Run Cases:

INSTRUCTION DETAILS

1.) Make sure you have 2 windows open on a compute node on your laptop

and login to stampede in both. (See instruction on 1
st
 page). In

one of the windows ssh to the MIC (ssh mic0)for executing commands

directly on the MIC (native execution)—this is your MIC window.

In the compute node window and the mic window go to the hello/F90

directory:

 cd offload_lab/hello/F90

2.) The “hello” toy codes do a simple reduction. Compile them.

To run natively on the MIC you must compile with –mmic. No

options are required for offloading.

ifort hello.F90 -o a.out.cpu

ifort -mmic hello.F90 -o a.out.mic

ifort hello_off.F90 -o a.out.off

MIC Lab Page 6

 On the host (compute node window) execute:

./a.out.cpu

./a.out.off

./a.out.mic #this will run on the MIC!

 Or, in the mic window execute the MIC binary:

./a.out.mic

3.) The omp “toy” codes do a simple OpenMP reduction. Compile them:

ifort -openmp hello_omp.F90 -o a.out.omp_cpu

ifort -mmic -openmp hello_omp.F90 -o a.out.omp_mic

ifort -openmp hello_omp_off.F90 -o a.out.omp_off

 On the host (in compute window) execute:

export OMP_NUM_THREADS=16

./a.out.omp_cpu #Run code on CPU

 export MIC_PREFIX=MIC #Set up MIC env with MIC_ prefixed

 export MIC_OMP_NUM_THREADS=240 #variables.

 ./a.out.omp_off #Run offloads on MIC

4.) On the MIC (in the mic window*) execute:

 (On the MIC the prompt is your present working directory.)

(No need for MIC_ prefix on MIC when executing natively!)

 ON THE MIC* execute:

export OMP_NUM_THREADS=244

./a.out.omp_mic

5.) While you are on the MIC, kick the tires on BusyBox.

cat /proc/cpuinfo, etc.

6.) Rerun cases above with a different number of threads on the host

and the MIC.

MIC Lab Page 7

2 README transfer offload transfer 2

What you will do: (See next section for INSTRUCTION DETAILS.)

You will learn how to use data transfer clauses in the offload

directive to minimize data transfer; how to have the compiler report

data transfers; and how to instruct the runtime to report data

transfers while the code is executing. You will also see how to set

KMP_Affinity environment variables for the MIC.

1.) Look over the dgemm matrix multiply code (mxm.c or mxm.F90).

Note, it is only necessary to declare a function as offloadable

with the attribute declaration statement and use the offload

directive to offload the MKL dgemm routine call. Because we use

an dev_id for the mic in the target clause, target(mic:0), we

force the function to be executed on the MIC. (Since we use

pointers in the C code, the storage behind the pointer must be

specified in what we call a “data specifiers” – inout here.)

2.) Look over the source.affinity file. Note that the number of

threads and affinity for the execution is set with the

MIC_OMP_NUM_THREADS and MIC_KMP_AFFINITY variables, respectively.

3.) Look over the makefile. Note, only the –mkl loader flags is

needed for offloading MKL routines to the MIC! (The –offload-

attribute-target=mic is unnecessary, but could be used to

automatically make MIC offloadable binaries of all functions in

any source file.)

INSTRUCTION DETAILS

1.) Make sure you have 2 windows open on a compute node on your laptop

and login to stampede in both. (See instruction on 1
st
 page). In

one of the windows ssh to the MIC (ssh mic0)for executing commands

directly on the MIC (native execution)—this is your MIC window.

In the compute node window and the MIC window go to the transfer

directory:

 cd offload_lab/transfer/C or cd offload_lab/transfer/F90

MIC Lab Page 8

2.) Once you have looked over the code, make the mxm executable, set

the affinity and number of threads (by sourcing the

source.affinity file), and run the mxm on the host:

 make clean

 make

 source sourceme.affinity

 ./mxm #takes 30 seconds.

Record the time for the 12,800 x 12,800 matrix

normal execution: __________ (sec.)

Now, change the code so that the a and b

matrices are only copied to the MIC and c is only copied back.

Use the in and out data_specifier clause.

 make clean; make

 ./mxm

Record the time for this optimization: ____________ (sec.)

By using the in/out clause you should have reduced the time by

about 1 second. You avoided transferring 3 x 12800*12800*(8

B/word)Bytes.

Determine the Bandwidth between the MIC and the host by dividing

the number of bytes by the time.

 Report Bandwidth: ___________(GB/sec)

3.) Look over what data the compiler is moving between the host and

the MIC by uncommenting the –opt-report-phase=offload option in

the makefile. Clean and remake:

 make clean

 make

4.) Now, watch the data traffic to the MIC by setting the

OFFLOAD_REPORT environment variable and rerunning the code:

 export OFFLOAD_REPORT=2 # ALSO try setting to level 3!

 ./mxm

 unset OFFLOAD_REPORT #turn reporting off when finished here

MIC Lab Page 9

5.) In the mic window (the window you ssh’d into the mic0 from)

execute the top command and type “1” (not the quotes) and all

hardware threads will appear. In the compute-node window execute

./mxm, and watch the hardware thread (cpu) occupation. Check your

environment for MIC_OMP_NUM_THREADS and MIC_KMP_AFFINITY values

with:

 env | grep MIC

What is the binding pattern for the 120 threads? Fill in the dots.

6.) Experiment with changing the number of threads and affinity to

see how threading and affinity affect the execution time and location

(watch with top):

 Edit sourceme.affinity

 CHANGE: MIC_OMP_NUM_THREADS – 120 and/or 60)

 MIC_KMP_AFFINITY – balanced, scatter, compact

 Loop over {

 edit sourceme.affinity

 source source.affinity

 ./mxm

 }

See: www.prace-project.eu/IMG/pdf/Best-Practice-Guide-Intel-Xeon-Phi.pdf

1 2 3 4

5 6 7 8

9 10 11 12

237 238 239 240

0 241 242 243

…

MIC Lab Page 10

3 README stencil offload stencil 3

General:

Rather than putting the compile commands in makefiles,

we have you type out the commands so that you can see

how simple it is to compile for different modes of computing.

Please review the code sten.F90. It runs the same routine on the

host and the mic concurrently with OMP.

Note: The same code is used for both architectures.

Developers may apply different optimizations to MIC and

host code. One can use #ifdef's with _ _MIC_ _ if different

“bits” of code are needed for the host and MIC.

A "signal" clause is used to allow asynchronous offload

execution. It uses a variable as a handle for an event.

No optimization (compiler and code) are performed here-- it

is just a simple stencil for illustrating the concurrency

mechanism.

sten.F90 is a simple code that shows how to compute

on the MIC and host concurrently.

The code shows several features of offloading:

 a.) offloading a routine

 b.) persistent data (data stays on the MIC between offloads)

 c.) asynchronous offloading (for host-mic concurrent computing)

The "doit" script shows how to set up the execution environment.

INSTRUCTION DETAILS

2.) You don't even need a makefile for this:

 (Script doit runs a.out with OPENMP env. vars for host & MIC.)

ifort -openmp sten.F90

./doit offload

MIC Lab Page 11

the output will report the time of the concurrent execution.

Change the value of "L" (between 1 and 4,000) to change the

distribution CPU/MIC (L is the host work, and 6000-L is the MIC

work). See code. (change back when finished)

3.) Even though the code has been programmed for offloading, you can

force the compiler to ignore the offload directives and only run

the code on the host. It is that simple, just use the

“-no-offload” option. See environment details for host execution

in the doit script. (Script “doit host” runs a.out with OpenMP

env. vars for the E5.)

ifort -openmp -no-offload sten.F90

./doit host #NOTE the times in #2 for host/MIC

4.) When compiling you can have the compiler report on offload

statements and MIC vectorization with the following option:

ifort -openmp -offload-option,mic,compiler,"-vec-report3 -O2" \

 -opt-report-phase:offload sten.F90

5.) If you want to see what is going on in the offload regions during

execution, set the OFFLOAD_REPORT to a level of verbosity {1-5}.

E.g.

ifort -openmp sten.F90

export OFFLOAD_REPORT=2

./doit

 #IMPORTANT when finished with Ex. 3.

unset OFFLOAD_REPORT #turn of reporting

6.) Having fun:

Try adjusting the number of MIC threads using the “mic” option

with the doit script. For this UNOPTIMIZED code, what is the

sweet spot for the thread count (balanced affinity)—total time.

Try a native execution:

How would you compile the sten.F90 code? (Hint:

can you combine the –no-offload and –mmic?) Compile the code

for native execution and run it directly on the MIC.

