
Native Computing and
Optimization Lab

Getting started
Connect to Stampede:

 ssh username@stampede.tacc.utexas.edu

Extract the lab to your account:

 tar xvf ~train00/mic_native_lab.tar

Change to the lab directory:

 cd ./mic_native_lab

Obtain an interactive session in Stampede:

 srun -N 1 -n 16 –A 20131204MIC -p development -t 01:00:00 --pty /bin/bash -l

Exercise 1

Compile vector.c as a native MIC application:

 icc -openmp -O3 -mmic ./vector.c -o vec.mic

And also as a MIC application with disabling vectorization:

 icc -openmp -O3 -mmic -no-vec ./vector.c -o novec.mic

Run both executables and take note of the timing difference. Does this make sense
given what you have learned about the MIC architecture?

Exercise 2

Let's get some information about the vectorization in this example code.

Compile the code again, but add the -vec-report5 option to the compilation line.

There will be some lines in the code which are not vectorizable. Can you use a higher
vector report level to find out why?

The next two slides contain examples of this output.

-vec-report5 Output
icc -O3 -openmp -vec-report5 -mmic ./vector_contig.c -o vec.mic

./vector_contig.c(36): (col. 34) remark: loop was not vectorized: statement cannot be vectorized.

./vector_contig.c(37): (col. 34) remark: loop was not vectorized: statement cannot be vectorized.

./vector_contig.c(38): (col. 34) remark: loop was not vectorized: statement cannot be vectorized.

./vector_contig.c(44): (col. 3) remark: loop was not vectorized: not inner loop.

./vector_contig.c(43): (col. 2) remark: loop was not vectorized: not inner loop.

./vector_contig.c(44): (col. 3) remark: loop was not vectorized: not inner loop.

./vector_contig.c(43): (col. 2) remark: loop was not vectorized: not inner loop.

-vec-report6 Output
Lots of additional information, including alignment:

icc -O3 -openmp -vec-report6 -mmic ./vector_contig.c -o vec.mic

./vector_contig.c(36): (col. 34) remark: loop was not vectorized: statement cannot be vectorized.

./vector_contig.c(36): (col. 34) remark: vectorization support: call to function rand cannot be vectorized.

...

./vector_contig.c(46): (col. 5) remark: vectorization support: reference M has aligned access.

./vector_contig.c(46): (col. 5) remark: vectorization support: reference z has aligned access.

...

./vector_contig.c(45): (col. 4) remark: LOOP WAS VECTORIZED.

./vector_contig.c(46): (col. 5) remark: vectorization support: reference M has unaligned access.

./vector_contig.c(46): (col. 5) remark: vectorization support: reference z has unaligned access.

...

./vector_contig.c(45): (col. 4) remark: PEEL LOOP WAS VECTORIZED.

Exercise 3

Run the vec.mic executable using 4 OpenMP threads and different affinity settings.

Write down the timings and the processor number to which each thread is bound.

Use the KMP_AFFINITY variable and the "compact/scatter/balanced" and "verbose"
settings as described in the lectures.

Do the results make sense given what you have learned?

Affinity Results
c557-404$ export MIC_OMP_NUM_THREADS=4

c557-404$ export MIC_KMP_AFFINITY=compact,granularity=fine,verbose

OMP: Info #147: KMP_AFFINITY: Internal thread 0 bound to OS proc set {1}

OMP: Info #147: KMP_AFFINITY: Internal thread 1 bound to OS proc set {2}

OMP: Info #147: KMP_AFFINITY: Internal thread 2 bound to OS proc set {3}

OMP: Info #147: KMP_AFFINITY: Internal thread 3 bound to OS proc set {4}

 Vectorization exercise completed in 1.282020e-01 seconds.

c557-404$ export MIC_KMP_AFFINITY=balanced,granularity=fine,verbose

OMP: Info #147: KMP_AFFINITY: Internal thread 0 bound to OS proc set {1}

OMP: Info #147: KMP_AFFINITY: Internal thread 1 bound to OS proc set {5}

OMP: Info #147: KMP_AFFINITY: Internal thread 2 bound to OS proc set {9}

OMP: Info #147: KMP_AFFINITY: Internal thread 3 bound to OS proc set {13}

 Vectorization exercise completed in 6.789207e-02 seconds.

KMP_AFFINITY=scatter should give (approximately) the same timing as balanced since it pins to the same
threads for this small example.

