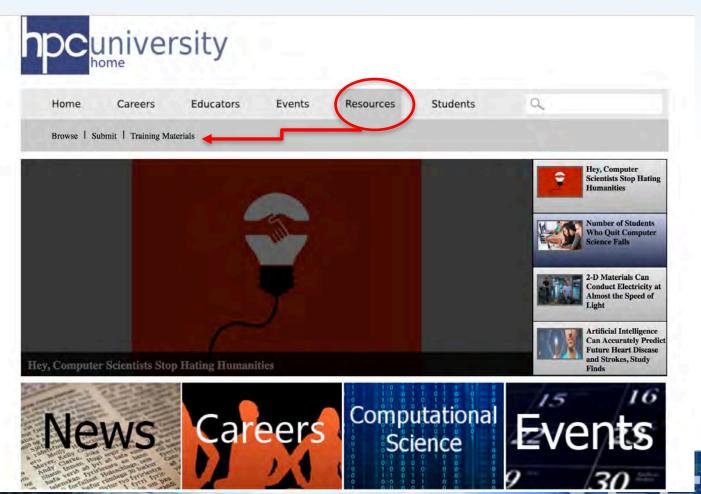
Computational Thinking

Jackson State University Workshop Kate Cahill (kcahill@osc.edu)


XSEDE

Extreme Science and Engineering Discovery Environment

Step 1: Get the presentation slides

http://hpcuniversity.org/trainingMaterials/238/

Computational Science Skills

- Computational science provides skills needed in the present and future workforce
 - Understanding of modeling techniques that are used in research and business
 - Data management skills
 - Analytical skills
 - Teamwork skills
 - Communications skills
- Inquiry-based education approach engages students in learning

Acquiring the Appropriate Skills

- Begin with basic modeling skills
 - What is a model?
 - Models of physical systems
 - Models of social systems
 - How do you create a model?
 - Understanding cause and effect
 - Representing the relationships in mathematical terms
 - How do you implement the model on the computer
 - How to you know if the model is "right"

Steps Toward Competency

- Investigate how models have been used to gain insights about complex systems
 - Observe and manipulate built models on personal computers
- Use modeling tools to add new components to existing models
- Build new models of interesting systems
- Use the model to explore the system
- Present results in writing and orally

Progression of Technical Skills

- Using modeling tools on a personal computer
- Learning programming skills
- Advancing applied math skills
- Applying skills to the student's academic major
 - Starting with simple models on personal computers
 - Expanding to large-scale applications on supercomputers

Integrating Materials into the Curriculum

- Model competencies
- http://hpcuniversity.org/educators/competen cies/

Goals for this Session

- Demonstrate the pedagogy for computational science education
- Progression of possible activities
 - Using complete models to demonstrate principles
 - Running models to gain insights into system behavior
 - Modifying models to relax assumptions
 - Building new models

What We Will Cover

- Introduce materials and models that can be incorporated for classroom use
- Introduce simple tools that can be used to build and demonstrate modeling techniques
- Provide a list of resources you can explore in detail later

Step 2: Reference Materials

- https://www.osc.edu/~kcahill
 - -Choose Computational ThinkingWorkshop Materials

Simple Models with Excel

- Open datasets folder
- Open simplepopulation.xlsx
 - Principle HAVE=HAD+Change
- Open saltdiffusion.xlsx
 - Principle "I am the average of my neighbors"

More Examples

- Examples from several of the tools we will be using in this workshop along with lesson plans
- http://www.shodor.org/talks-new/

Starting with Simple Models and Tools

- Can use simple models to illustrate modeling principles and definitions
- Models of change in space and/or time:

HAVE = HAD + CHANGE

- Which phenomena employ this basic concept?
- Example go to datasets folder
- Open SimplePopulation.xls

Mostly hidden Excel Capabilities

- Slider bar
 - Access via Developer menu
 - File/options/customize ribbon
 - Choose All tabs move Developer and turn it on
- Insert Scroll Bar
- Associate its value with a cell D11
- Value of 50
- Value of D8 is D11/100
- Close this spreadsheet

Another simple model

- I am the average of my neighbors
- Representation of a space by a matrix of values representing location and adjacency
 - 2D or 3D
- What is modeled in this way?

More Excel tricks

- Open saltdiffusion.xlsx
 - Note the matrix of numbers
 - Each cell is calculated as the average of its neighbors
 - In D5 insert 50 or = B5
 - Note the change of color
 - Now use the F9 key to incrementally calculate the results
- Turned calculation to manual
- Added formatting to cells based on value

Built Models You Can Use in Classroom

- Go to workshop website referred to earlier
- Scroll down the list to Java Applets
 - Choose histogram
 - Ability to examine the impact of categorization on the description of a distribution
- Now scroll to Resources for Computational Modeling
 - Find Shared science instructional modules PHET

Explore Other Relevant Examples

- Look at sites relevant to your discipline
 - Computational physics
 - Computational chemistry
 - More Shodor examples
 - Engineering
 - Economics
 - And so on

Systems Model Tools

- There are several systems modeling packages that can provide similar learning experiences
- iThink; Berkeley Madonna; Stella
- Vensim
 - Free education version
 - Graphical user interface to modeling
- Open bunnycomparison.mdl

Some Sketch Tools

- Auxiliary Variable (constant)
- Box Variable (Level)
- Arrow (connects cause and effect)
- Rate

More Vensim Examples

- Other examples
 - Advanced SIR
 - Pharma model
- Can save runs under different names
- Compare runs on the same graph
- Interactively change parameters to find a target

Explore Other Built Models

http://www.shodor.org/talks-new/vensim/

Not So Secret Agent

- What is an agent?
 - An autonomous entity that acts according to a set of rules or constraints
 - Multiple agents are involved in complex systems, each acting in a particular way
 - Agents that "meet" then interact to produce another set of outcomes
 - The resulting outcomes are often different than one would expect due to the complexity of the interactions
 - Most agent-based models introduce the idea of randomness in the interaction rules – i.e. Monte Carlo simulations

Some Modeling Conveniences

- Agents can act both in space and in time
 - Explicit spatial movement is often important to accurately represent some phenomena
 - More difficult to do with other approaches
 - More realistic representations of spatial phenomena are possible

Some Examples

- Spatially explicit models of the spread of disease
- Growth of urban areas
- Supply chain optimization
- Human cell and immune system models
- Biochemical processes
- Consumer behavior and economics models

Tools

- AgentSheets
- Netlogo
- StarLogo
- Repast (with a supercomputer version)
- Swarm

Agent Models Tell A Story

- Should describe the behaviors before model building
- Example of simple disease model
 - Agents: People
 - People are either healthy or sick
 - For a contagious disease, what is the story of the interaction of healthy and sick people?

Defining Agent Behavior

- Login to www.agentcubesonline.com
- Username shodor0
- Password: sh0d0r1f1c
- Click on AgentCubes logo at top
- Type rpanoff in the search box at bottom
- Choose CLASS SIR on the bottom

Story behind this model

- Agents with two states
- If they "meet" there is some probability that a healthy person will become sick
- Examine the program syntax
- Click on Person Agent

Second Example

- Go back and to rpanoff models list
- Select Flat_fire
- Note there are trees with three states
- Story behind this model

Running the Model

- Click on the finger in the pallet on the Worksheet window then a tree and Run
 - Observe the behavior what is the result?
 - Clck Stop then Reset
 - Now change the burnprob on Simulation
 Properties to 5.0
 - How do the results compare?

Agents and Behavior

- Agents can have several states
 - E.G. Tree green, on fire, burnt over
 - Each state has an editable depiction
- Right click on the tree or click the tree and use the Gallery – Edit Behavior
 - Simple graphical programming environment

Moving to Supercomputer Scale

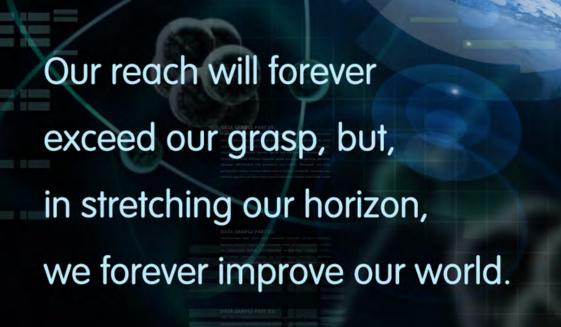
- Once students understand the basic principles of a particular type of model – can scale models to run on supercomputers
- Use community codes or science gateways
- Approach the problems in a similar way
 - Make multiple runs to understand system behavior
 - Pose problems that change a finite set of model parameters to answer specific questions

HPCUniversity.org

- Repository of materials
 - Workshop slides
 - Links to videos
 - Exercises
- Events calendar conferences, deadlines
- Fellowships, Internships & Job Postings

Questions and Discussion

http://bit.ly/xsedejackson



Reference Materials Reminder

- https://www.osc.edu/~kcahill
 - -Choose Computational ThinkingWorkshop Materials
 - —This presentation is here:
 - http://hpcuniversity.org/trainingMaterials/238/

XSEDE

Extreme Science and Engineering Discovery Environment