1*CE

TEXAS ADVANCED COMPUTING CENTER
WWW.TACC.UTEXAS.EDU

@ TEXAS

The University of Texas at Austin

Programming with
Python

Southern University and A&M College
April 15t

P Bl

PRESENTED BY:

Antonio Gomez Iglesias

Texas Advanced Computing Center
HPC Group

agomez@tacc.utexas.edu

hitp://hpcuniversity.org/trainingMaterials/237/

XSEDE

Single virtual system that researchers can use to interactively share
computing resources, data and expertise.

People around the world use these resources and services - things
like supercomputers, collections of data and new tools - to improve
our planet.

Access to resources that include HPC machines, High Throughput
Computing (HTC) machines, visualization, data storage, test-beds, &
services

Science Gateways enable entire communities of users associated
with a common discipline to use national resources through
common interface that is configured for optimal use.

Extended Collaborative Support Service (ECSS) through which
researchers can request to be paired with expert staff members for
an extended period (weeks up to a year).

hitps://www.xsede.org

XSEDE Resources

XSEDE Resource User Guides

Below are links to each resource's user guide. Each guide provides information and instructions on system access, computing environment and running
jobs specific to that resource. Resources are listed alphabetically within each resource type: High Performance Computing, High Throughput Computing,
Visualization, Storage systems, Special Purpose systems and Software

XSEDE is committed to providing quality, useful documentation to its users. Please feel free to leave your suggestions and comments at the bottom of each

user guide.
High Performance Computing High Throughput Computing
Bridges (PSC) Open Science Grid
Bridges GPU (PSC) Coming soon... Scientific Visualization
Comet (SDSC) Maverick (TACC)
Comet GPU (SDSC) Coming soon... Storage Systems
Gordon (SDSC) decommission April, 2017 Bridges Pylon (PSC)
Gordon ION (SDSC) decommission April, 2017 Data Oasis (SDSC)
Jetstream (IU/TACC) Ranch (TACC)
Stampede (TACC) decommission Summer 2017 Wrangler Storage (TACC)

Stampede 2 (TACC) Coming soon...
SuperMIC (LSU)
Wrangler Analytics (TACC)

XStream (Stanford)

hitps://portal.xsede.org/user-guides

Maverick

Ready?

« Did you signine
« Do you have a username/passworde
« Can you connect to the Intfernete

hitp://hpcuniversity.org/trainingMaterials/237/

TACC |

Getting Started

Go to TACC vis. portal: https://vis.tacc.utexas.edu/
Select “TACC User Portal User™

Use your username/password
Go to the Jobs tab
On “Session type”, click on iPython/Jupyter Notebook

Click on Set iPython Password and choose something you
like

Click on iPython/Jupyter Notebook (again)
Click on Start Job
Click on Open in Browser

Create a new Python 2 Notebook (“New” button)

Part |

* My first program
 Data types

« Variables

« Arithmetic operations
« Relational operations

My first program

* |In your Jupyter Notebook, write this program:

This i1s my first program

print “Hello from my first program”

e Shift+Enter will run this code
« You can also click on the “Run” button

Our first program

nn The text between “"" is a comment = it

helps you to know what the code does,

but it's not executed. You can also use

mon #, and all of text to the right of the #
symbol will be a comment

This 1s my first program

This is a Python instruction
(print). This is the code that will
be executed

print “Hello from my first program”

What happens when you run
your program?

There is a Python interpreter
The interpreter understand Python code

Converts this code to something that the computer
understands

Any “computer” with a Python interpreter installed
will be able to run your program!

Jupyter calls this inferpreter for you
If you are not using Jupyter, from a Console, simply run:
“$ python your program.py”

Let’s print a number

print “This is my first program!”
print 5
print 1+1

TACC |

Using variables

You will need to store data info variables
You can use those variables later on
You can perform operations with those variables

Variables are declared with a name, followed by ‘=*
and a value

« Aninteger, string,...

When declaring a variable, capitalization is
Important:
iAl <> iG!

Using variables

five = 5
one = 1
print five

print one + one

message = “"This i1s a string”

print message

Scope of variables

Not all variables are accessible from all parts of
the program (we'll see it with functions)

Variables in the main body (what you have so
far) are global: accessible everywhere in the
code

Variables in one indented block are accessible in
that block and dependent blocks (blocks inside
the block): we are going to see this (indentation)

Data types

100

integer variable
floating point variable

string variable = “Name”

100.0

Checking/changing types

Variables have a type

Check the type of a variable using the type () function:

print type (integer variable)

It is also possible 1o change the type of some basic types:

str(int/£float): converts an integer/float to a
string

* int(str): converts a string to an integer

float(str): converts a string to a float

Be careful: you can only convert data that actually
makes sense to be tfransformed

Arithmetic operations

Task Performed

+ Addition 1+1=2
- Subftraction 5-3=2
/ Division 4/2=2
% Modulo 5%2=1
* Multiplication 5*2=10
// Floor division 5//2=2
o To the power of 2**3=8

17

Arithmetic operations

« What happenswhenyoutry5/2 ¢
« Andb50/2¢%

« Can you do string + string?

« And string + numbere

« String * numbere

« What's the result of 3+5*2 ¢

Order of operators
L0

D,
3. */[.%.//
4. +, -

F < > <= >=
6. ==, |=

So, iIf 3+5*2 = 13. How can you get 16 with the
same sequence of numbers? (You can add
more operators)

Order of operators

3+5%*2 =13
« 5"2=10
« 3+10=13

(3+5)*2 = 16
. 345=8
. 82=16

20

Relational operations

Symbol Task Performed Example

== True if equal | ==

|= True if not equal 11=2
Less than 1 <2
Greater than 2> 1

<= Less than or equal to 2<=2

>= Greater than orequalto 3 >=2

21

Part 2

* |nput and output

« Control flow:
Loops
Conditions

 More data types

« Functions

22

Reading something from the
keyboard

var = input(“"Write a number: ")

print “The number that you wrote was : ”, var

Try to read a string

23

Writing on the screen

« We have adlready seen print

* print has some tricks to put fogether strings and

numbers:

print “The number that you wrote was

print “The number that you wrote was

Symbol Meaning

TACC |

Zod

integer

Tof

floating point

%S

string

”, wvar

o

o

d//

o

o

var

24

Reading and writing files

* Files are permanently stored on disk

« You can create data, store it on a file, and reuse
It later on

When working with files you have to:
1. Open afile
2. Read/write
3. Close the file

25

Writing to a file

my file = open(“output file.txt”,'w’)
vars = “"This 1is a string”

my file.write(vars)

varl = 10

my file.write(str(varl))

var2 = 20.0

my file.write(str(var2))

my file.close()

What's happening with the output?

26

Some special characters

\nN New line

\t Insert tab

« Fix the previous program to write each variable in one line.

my file = open(“output file.txt”,’'w’)
vars = “This is a string”
my file.write(vars)

my file.write(“\n”)

varl = 10

my file.write(str(varl))
my file.write(“\n”)

var2 = 20.0

my file.write(str(var2))
my file.write(“\n”)

my file.close()

Appending to a file / Rewriting
a file / Open as read only

« When opening a file, you need to decide “how”
you want to open it:

 Just read?
« Are you going to write to the file?
* |f the file already exists, what do you want to do with ite

Character Meaning

r Read only file (default)

W Write mode: file will be erased if it exists

a Write mode: new content will be appended to the end of
the file

Tacc

Read the file you created
before

my file = open(“output file.txt”,’'r’)
content = my file.read()
print content

my file.close()

29

Read the file you created before
(line by line)

my file = open(“output file.txt”,’'r’)
vars = my file.readline()
varl = my file.readline()

var2 = my file.readline()

print “String: ”, wvars
print “Integer: ", varl
print “Float: ”, wvar2

my file.close()

30

Control flow

« So far we have been writing instruction after
INstruction

« Every instruction is executed in order

 What happens if we want to have instructions
that are only executed if a given condition is
truee

if/elsel/elif

« The if/else construction allows you to define
conditions in your program

* The syntaxis as follows:

if conditionA: #Remember to put the colon
statementA #Remember indentation

elif conditionB: #Colon here too
statementB

else: #And another colon
statementD

this line will be always executed (after the if/else)

TACC |

32

if/else

 There can be many instructions in each part of the
if/else

« Remember the scope of the variables: if a variable
Is defined inside of if/else, it won't be available
outside the if/else

- Remember to keep the 4 spaces: that's the
delimiter of a block. All the lines with the same
indentation belong to the same block

33

Exercise

« Read anumber from the keyboard

« |f the number is greater or equal than 10, show “This
number is greater or equal than 10"

« Else, show the message “This number is smaller than
‘|OH

5 minutes for this exercise

TACC |

34

Solution

number = input(“Write a number: ")
if number >= 10:
print “This number is greater or equal than 10”
else:
print “This number is smaller than 10”
print “Bye!”

35

Nested if

You can nest different blocks:

if conditionl:
statementl
if condition2:
statement2
else:
if condition3:
statement3 # when is this statement executed?
else: # which ‘if’ does this ‘else’ belong to?

statementd4d # when is this statement executed?

36

For loops

For loops allow you to iterate over a sequence

my file = open(“output file.txt”,'r’)
vars = my file.readline ()
varl = my file.readline()
var2 = my file.readline ()
for i in wvars, varl, var2:
print i

my file.close()

37

range()

« This function creates a list containing arithmetic
progression

range (5)
[o, 1, 2, 3, 4]

« This is very useful in loops

for i in range(5):

print 1

38

Exercise

 Partf I:
« Read a number from the keyboard

« Show the list of all positive integers from O to that
number

« Part 2:

« Only show even numbers

5 minutes for this exercise

TACC |

39

While loops

 Another iterative construct
« (Gives you a different type of control

while (condition is True) :

do something

« Example: simulate a for loop with a while loop

idx = 0
while (idx < 10):

TACC |

do something

40

Exercise

 Use a while loop to read a number from the
keyboard

« Stop when the number read is one you
previously decided (i.e. 10)

3 minutes for this exercise (3!1)

Solution

var = 0
while (wvar

var =

TACC |

1= 10):

input (“"Write a number:

II)

42

Nesting

for ...:

if contidition1:
if statement1
else statement1
while condition:
statement1

statement2

if condition3:

if statement1

for_statement1

m - statgment

43

lists

A list is a sequence, where each element is assigned a
position (index)

You can access each position using []. First position is 0
Elements in the list can be of different type

mylistl = [“first item”, “second item”]
mylist2 = [1, 2, 3, 4]

mylist3 = [“first”, “second”, 3]

print mylistl[0], mylistl[1]

print mylist2[0]

print mylist3

print mylist3[0], mylist3[1], mylist3[2]
print mylist2[0] + mylist3[2]

44

lists

« |t's possible to use slicing:
print mylist3[0:3]
print mylist3

 To change the value of an element in a list, simply assign it
a new value:

mylist3[0] = 10

print mylist3

TACC |

45

lists

There's a function that returns the number of elements in a list
len (mylist2)
Check if a value exists in a list:
1 in mylist2
Delete an element
len (mylist2)
del mylist2[O0]
print mylist2
Iterate over the elements of a list:
for x in mylist2:

print x

46

Exercise

« Create alist of 10 elements

Find the maximum number in the list

5 minutes for this exercise

47

Exercise

mylist = [1, 99, 51,
mymax = 0
for i in mylist:

if (mymax < 1i):

mymax = i

print mymax

43,

112,

7,

64,

11,

16, 81]

48

lists

« There are more functions
max (mylist), min (mylist)

« |t's possible to add new elements to a list:
my list.append(new_item)

« We know how to find if an element exists, but there’s a
way to return the position of that element:

my list.index(item)
« Or how many times a given item appears in the list:

my list.count(item)

49

break/continue

* break: terminates a loop

* continue: skip the remainder of the loop and
return to the beginning of the loop

for x in my list: for x in my list:
if x == something: if x == something:
statement statement

50

Functions

The code can (will) get too complicated

Group the same functionality in a function:
« Reusable code

* Provides modularity to your code

« Easier to develop, make changes, ...

« |dedlly a function does one thing

You can use any of the conftrol flow options that we
already know

Functions are executed when they are called from the
code currently in execution

They need 1o be declared before they are called

Functions

To declare a function:

def name of the function ([arguments]):
The code inside the function is indented

Functions normally end with a refurn statement:

return [expression]

The variables that are declared within the function,

are not accessible from outside the function
(scope)

52

Functions

def function name () : #The function is only executed when called
statementl
statement2
control flow_ statement:
stament

return

statement before the function
function name () # we call the function here

statement after the function

53

Declaring our first function

def my first function():
print “Hello from the function”

return

print “This is before the function”
my first function()
print “This is after the function”

54

Passing values to functions

« Define a list of arguments separated by commas
def name of the function (argl, arg2, arg3):

print argl, arg2, arg3
 When calling the function, your variables don’t

need to be called argl, arg2, arg3:

name of the function(varl, wvarY, VaRZ)

S5

Passing a string and an
integer

def function with args(my str, my int):

print “This is the string: ”, my str
print “This is the integer: ”, my int
return

var_str = “Hi”

var_int =

function with args(var_str, var_int)

56

Returning a value from a
function

e Use the return statement to return a variable or
set of variables to the caller

« Assign the function to a variable or set of
variables on the caller

def my function():

return a,b,c

mya, myb, myc = my function()

S/

Exercise

« Read a number from the keyboard

« Pass the number to a function

 |n the function:

« If the number is greater than 10, show “This number is
greater than 10"

« Else, show the message “This number is smaller than 10"

58

Special functions

What code is executed when the program starts?

« The interpreter will execute all the code that it finds in the
file

It is sometimes useful (modules) to define a “main”

function, the entry point to your program, and put
all the statements inside main

Everything inside main, is local to main (remember
the scope of variables)

if name == " main .

first statement of your program

%%

Remember the scope

my str = “hi”

def example():
a=2

print my str

print “This is the function:

return

if name = " _main_ "

a=1
example ()

44

print “This is main: ”, a

7”7

60

Part 3

Modules

Using your own modules

61

Modules

« So far we have seen some functions:

* len(), range(), max(), min() ..

« Python includes many external libraries or
modules that provide additional functionality
« Mathematical functions
« System interaction
« Plotting

* You can also define your own modules

« Helpful to group a lot of functionality together and
reuse it

62

import

To use a module, first you have to tell Python that you
want to use it

import math
import string
You now have access to the functionality provided by

math by using “math.” plus the name of the function
that you want

math.floor (math.pi)

math.sqrt(9)

math.pow (3, 2)
https://docs.python.org/2/library/math.html
https://docs.python.org/2/library/string.html

63

from X import Y

When you import a module, you still need to put the name of
the module + “.” + function name

If you know that you only need the “floor” function from
math, you can simply import like:

from math import floor

Now you can call £loor (3.14), but you can't call
floor (math.pi)

You can also import everything from a module (this might be
dangerous)

from math import *

64

Creating your own module

« Creatfe a .py file (my module.py):
New -> Tex file (File - Rename)

« Define the functions that you need:
def functionl(..):
def function2(..):

 From your notebook, import the module:

import my module

 You should now be able to call:

my module.functionl(..)

65

Part 4

« Plofting

66

matplotlib

- maiplotlib is the most popular plotting library in
Python

import matplotlib.pyplot as plt

* You need to tell matplotlib what is that you want
to plot (the data):

plt.plot(x, y, [style])
 plot fakes atf least one parameter
 plot can be used to plot several different series

67

matplotlib

You normally ploft lists:
#We need the next line for Jupyter

import matplotlib.pyplot as plt
myx = [1,2,3,4]
myy = [1,2,3,4]
plt.plot (myx, myy)
But, sometimes, this doesn't show anything!!
plt.show () = this function displays an image

68

Adding more things

We already know who to create basic plots

When presenting data, you need to give more
information: axis, units, legend

« Adding labels to the axis:
plt.xlabel (“put xlabel here”)
plt.ylabel ("put ylabel here”)

« Adding a title:
plt.title(“"title of the plot”)

69

Changing the plot style

plt.plot (myx, myy,

Combine colors and markers to create different

styles

Symbol Color Symbol Marker/style

[format])

T’ red ‘o’ Use circles
‘b’ blue ATy P ST Use triangles
g’ green ‘s’ Use squares
‘c’ cyan o Use stars
‘m’ magenta Single dashes
Y’ yellow Double dashed line
'k’ black
white

/0

Plotting more than one
series

« Many times you need to compare two different
series in a single plot

 You can use more than one plot and then show
them all together:
plt.plot(xl, yl, “bo”)
plot.plot(x2, y2, “r”)
plt.show ()

Setting limits, adding ticks

* |tis possible to set limits to both x and y-axis
« Useful in cases where matplotlib might not be
doing the best job
plt.xlim(xmin, xmax)
plt.ylim(ymin, ymax)

¢ Itis sometimes also useful fo add more detall
between ticks, so that it's easier 1o visuadlize the
data

minorticks on()

/2

Limits and ticks

import matplotlib.pyplot as plt

plt.plot([1,2,3,4])
plt.ylabel (“some numbers”)
plt.title("my plot”)
plt.x1lim(0,2)
plt.ylim (0, 3)
plt.minorticks on()
plt.show()

/3

More advanced plotting

It is sometimes better to explicitly create the figure
and the axis as independent elements

myxl = range (5)

myx2 = range (10)

fig, ax = plt.subplots()

ax.plot (myxl, "bo", label="labell")
ax.plot (myx2, "r", label="label2")
ax.set xlim(1,5)

ax.set ylim(1,5)

ax.set xlabel("x label")

ax.set ylabel ("y label")
ax.minorticks_on()
ax.legend(loc='"upper left', shadow=True)

plt.show ()

More plotting

 Feel free to explore more:
http://matplotlib.org/gallery.html

« Very often you will see code with something like:
import numpy as np

« NumPy is a numerical library, designed to
provide data structures that are very fast (arrays)

https://docs.scipy.org/doc/numpy-dev/user/quickstart.ntml

* There are other plotting libraries
http://seaborn.pydata.org/index.himi

http://agplot.yhathg.com/
http://bokeh.pydata.org
https://plot.ly/python/

79

Finally

* Your feedback is important

« What went well, what didn't

« What else can we do@¢

 Please take a few minutes o complete
the survey!

hitp://bit.ly/xsedesouthern

TACC |

76

1*CE

TEXAS ADVANCED COMPUTING CENTER
WWW.TACC.UTEXAS.EDU

@ TEXAS

The University of Texas at Austin

Programming with
Python

Southern University and A&M College
April 15t

P Bl

PRESENTED BY:

Antonio Gomez Iglesias

Texas Advanced Computing Center
HPC Group

agomez@tacc.utexas.edu

hitp://hpcuniversity.org/trainingMaterials/237/

