Getting Started

- Download and install R + Rstudio
 - <u>http://www.r-project.org/</u>
 - https://www.rstudio.com/products/rstudio/download2/
- TACC
 - ssh username@wrangler.tacc.utexas.edu
 - % module load Rstats
 - % R
- Slides
 - R-Intro: http://bit.ly/2bjYIdT
 - R-Analytics: http://bit.ly/2boe4Cn
 - R-HPC: http://bit.ly/2b0BMPS

Schedule

- Introduction to R 9:15 to 10:15
- Break
- R Analytics 10:30 to 11:30
- Lunch
- R for HPC 1-2:00

Schedule

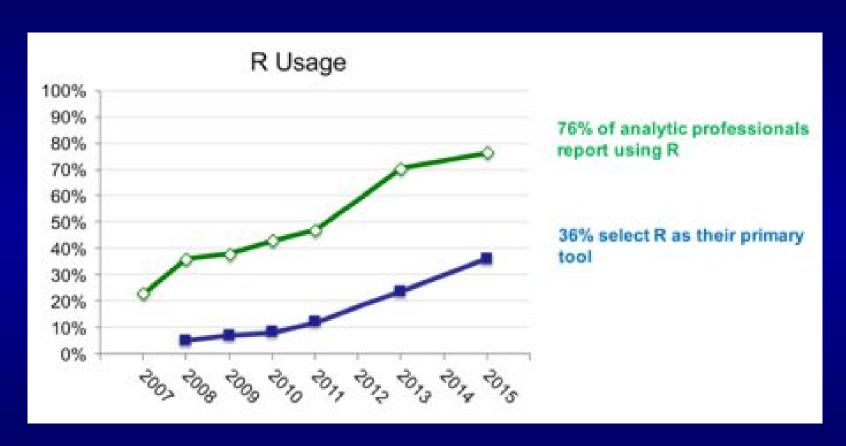
- Introduction to R 9:15 to 10:15
- Break
- R Analytics 10:30 to 11:30
- Lunch
- R for HPC 1-2:00

Introduction to R

David Walling
Data Group
Texas Advanced Computing Center
walling@tacc.utexas.edu

R-project background

- Origin and History
 - Initially written by Ross Ihaka and Robert Gentleman at Dep. of Statistics of U of Auckland, New Zealand during 1990s.
 - An offspring of S: Bell Labs, interactive Fortran/C
 - International project since 1997/Beta release 200
 - Explosive growth last 10 years
- Open source with GPL license
 - Free to anyone
 - In active development *
 - http://www.r-project.org/


What R does

R is a programming environment for statistical and data analysis computations.

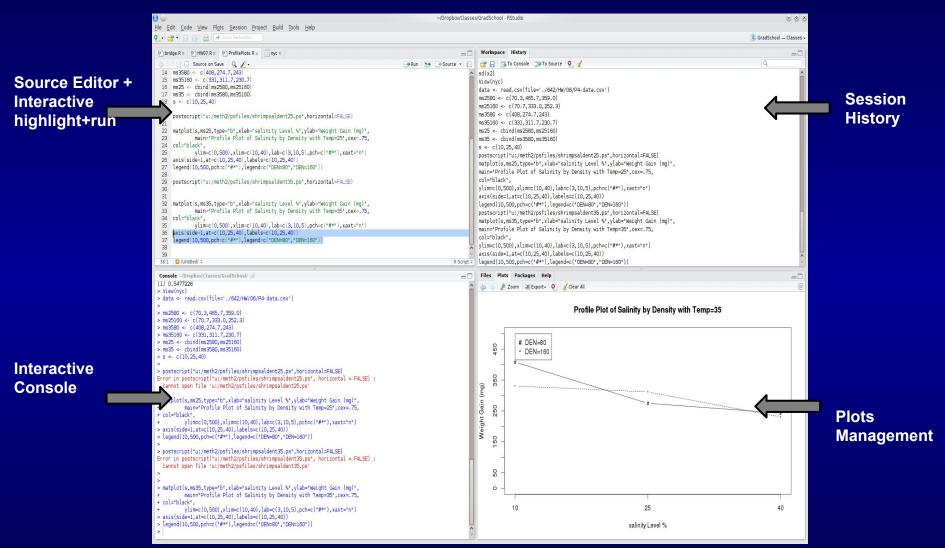
```
Core Package
     Statistical functions
     Plotting and graphics
     Data handling and storage
          predefined data reader
          textual, regular expressions
          hashing
     Data analysis functions
     Programming support:
         loops, branching, subroutines
         Object Oriented
Extensive community contributed packages.
```


R's Popularity

http://www.r-bloggers.com/new-surveys-show-continued-popularity-of-r/

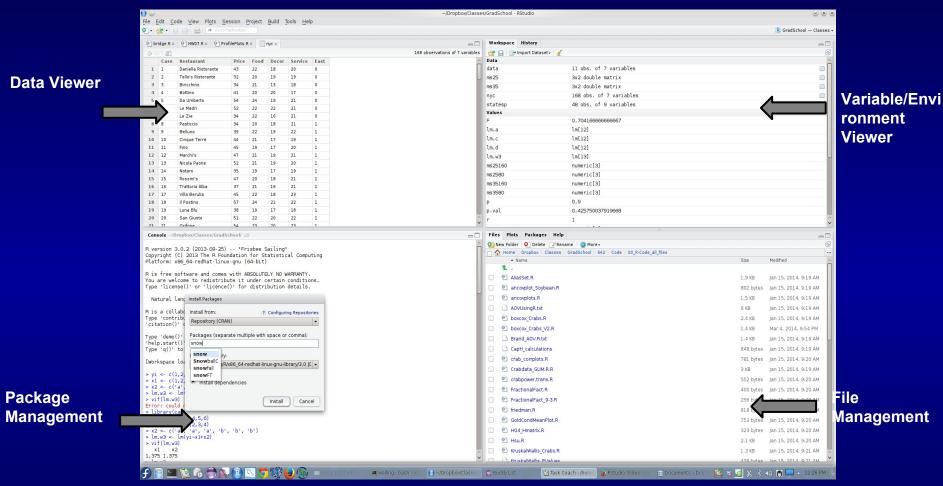
R command line interface on cluster

```
loginl$ R
R version 2.15.1 (2012-06-22) -- "Roasted Marshmallows"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86 64-unknown-linux-qnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
 Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
```

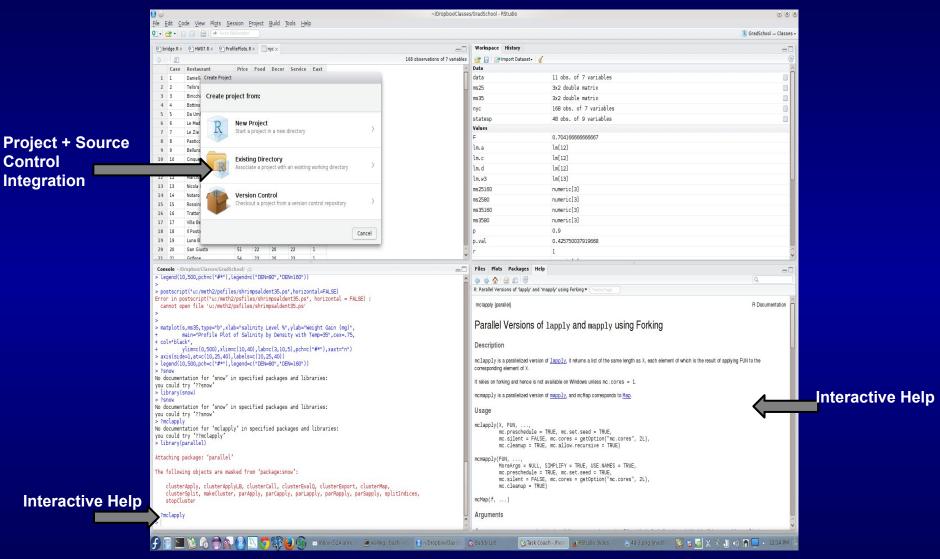


RStudio: A better user interface of R

- RStudio is an open source graphical user environment for R users.
 - https://www.rstudio.com/
- RStudio allow users to
 - Interactive code development
 - Run R scripts
 - Exploring local file system
 - Viewing data file
 - Viewing graphical output from R
 - **–** ...



RStudio GUI



RStudio GUI

RStudio GUI

Basic Syntax

Math Operations

R as a calculator

```
- +, -, /, *, ^, log, exp, ...
```

```
> (17*0.35)^(1/3)
[1] 1.812059
> log2(128)
[1] 7
> exp(1)
[1] 2.718282
> 3^-1
[1] 0.3333333
```


Variables

Numeric

```
> a=49
> a
[1] 49
```

Character String

```
> b="this is a string"
> b
[1] "this is a string"
```

Logical

```
> c=(1+1==3)
> c
[1] FALSE
```


Assigning Values to Variables

> a = (1:6)

1 2 3 4 5

```
• "<-" or "="
    > a=4
    > a
    [1] 4
    > a < -40
• As [1] 40 ple values
  - Combine, c()
  Stdin, scan()
  – Series, seq()
```

```
> a=c(1, 2, 4, 7, 9)
> a
[1] 1 2 4 7 9

> a=scan()
1: 9
2: 7
3: 4
4: 2
5: 1
6:
```

Read 5 items

```
> a=seq(1,6,0.5)
> a
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
```


NA: Missing Value

- Variables of each data type (numeric, character, logical) can also take the value NA: not available.
 - NA is not the same as 0
 - NA is not the same as ""
 - NA is not the same as FALSE
- •Any operations (calculations, comparisons) that involve NA may or may not produce NA:

```
> NA
[1] NA
> 1+NA
[1] NA
> log(NA)
[1] NA
```

```
> NA | TRUE

[1] TRUE

> NA | FALSE

[1] NA

> NA & TRUE

[1] NA

> NA & FALSE

[1] FALSE
```

```
> max(c(1,2,3, NA))
[1] NA
> max(c(1,2,3,NA), na.rm=T)
[1] 3
```


Basic Data Structure

Vector

- an ordered collection of data of the same type
- a single number is the special case of a vector with 1 element.
- Usually accessed by index

```
> # Vectors
> a = c(1,2,3)
[1] 1 2 3
> a[2]
> a*2
[1] 2 4 6
> max(a)
> sum(a)
```


Basic Data Structure

- Matrix
 - Rows, Columns
 - Single data type
 - Linear algebra computations

```
> A = matrix(c(1,2,3,4,5,6,7,8,9), nrow=3)
> A
     [,1] [,2] [,3]
[1,]
[2,]
[3,]
> A[2,]
[1] 2 5 8
> x = c(1,2,3)
> A * x
     [,1] [,2] [,3]
[1,]
[2,]
                 16
            18
                  27
> A %*% X
     [,1]
[1,]
       30
[2,]
[3,]
       42
```


Basic Data Structure

- List
 - an ordered collection of data of arbitrary types.
 - name-value pair
 - Accessible by name

```
> doe = list(name="john", age=28, married=F)
> doe$name
[1] "john"
> doe$age
[1] 28
> doe$married
[1] FALSE
> doe[1]
$name
[1] "john"
```


Dataframes

- R handles data in objects known as dataframes
 - rows: data items;
 - columns: values of the different attributes
 - Values in each column should be from the same type.

	Area	Slope	Vegetation	Soil.pH	Damp	Worm.density
Silwood.Bottom	5.1	2	Arable	5.2	FALSE	7
Gunness.Thicket	3.8	0	Scrub	4.2	FALSE	6
Oak.Mead	3.1	2	Grassland	3.9	FALSE	2
North.Gravel	3.3	1	Grassland	4.1	FALSE	1
South.Gravel	3.7	2	Grassland	4.0	FALSE	2
Pond.Field	4.1	0	Meadow	5.0	TRUE	6
Water.Meadow	3.9	0	Meadow	4.9	TRUE	8
Pound.Hill	4.4	2	Arable	4.5	FALSE	5

Built In Data Sets

R provides many pre-installed data sets

data()

data(mtcars)

mtcars {datasets}

R Documentation

Motor Trend Car Road Tests

Description

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models).

Usage

mtcars

Format

A data frame with 32 observations on 11 variables.

- [, 1] mpg Miles/(US) gallon
- [, 2] cyl Number of cylinders
- [, 3] disp Displacement (cu.in.)
- [, 4] hp Gross horsepower
- [, 5] drat Rear axle ratio
- [, 6] wt Weight (1000 lbs)
- [, 7] asec 1/4 mile time
- [, 8] vs V/S
- [, 9] am Transmission (0 = automatic, 1 = manual)
- [,10] gear Number of forward gears
- [,11] carb Number of carburetors

Read Dataframes From File

- Read tab-delimited file directly.
- Variable name in header row cannot have space.
- To see the content of the dataframes (object) just type is name:
 - > worms

Selecting Data from Dataframes

- Subscripts within square brackets
 - _ r, means "all the rows" and
 - _ ,1 means "all the columns"
- To select the first three column of the dataframe

> worms[,1:3]			
	Area	Slope	Vegetation
Silwood.Bottom	5.1	2	Arable
Gunness.Thicket	3.8	0	Scrub
Oak.Mead	3.1	2	Grassland
North.Gravel	3.3	1	Grassland
South.Gravel	3.7	2	Grassland
Pond.Field	4.1	0	Meadow
Water.Meadow	3.9	0	Meadow
Pound.Hill	4.4	2	Arable

Selecting Data from Dataframes

- names()
 - Get a list of variables attached to the input name

- attach()
 - Make the variables accessible by name:
 - > attach(worms)

Selecting Data from Dataframes

Using logic expression while selecting:

```
Area Slope Vegetation Soil.pH Damp Worm.density
Silwood, Bottom
               5.1
                              Arable
                                         5.2 FALSE
Gunness, Thicket 3.8
                               Scrub
                                         4.2 FALSE
Oak, Mead
                3.1
                           Grassland
                                         3.9 FALSE
North Gravel 3.3
                                         4.1 FALSE
                           Grassland
South, Gravel
                3.7
                           Grassland
                                         4.0 FALSE
Pond. Field
                4 1
                              Meadow
                                         5.0
                                             TRUE
Water Meadow
                3.9
                             Meadow
                                         4.9
                                              TRUE
Pound. Hill
                              Arable
                                         4.5 FALSE
                4.4
```


Selecting Data From a Dataframe

More examples:

```
> worms[Damp,]
           Area Slope Vegetation Soil.pH Damp Worm.density
Pond.Field 4.1
                         Meadow
                                   5.0 TRUE
Water.Meadow 3.9
                      Meadow 4.9 TRUE
> worms$Vegetation
                    Grassland Grassland Grassland Meadow
[1] Arable Scrub
                                                          Meadow
[8] Arable
Levels: Arable Grassland Meadow Scrub
> worms$Vegetation=="Grassland"
   FALSE FALSE TRUE TRUE TRUE FALSE FALSE
> worms[ worms$Vegetation=="Grassland",]
            Area Slope Vegetation Soil.pH Damp Worm.density
Oak.Mead 3.1
                    2 Grassland
                                   3.9 FALSE
North, Gravel 3.3
                 1 Grassland 4.1 FALSE
South.Gravel 3.7 2 Grassland 4.0 FALSE
```

subset rows by a logical vector

subset a column

comparison resulting in logical vector

subset the selected rows

Sorting Data in Data frames

order()

State the Area for sorting order

State columns to be sorted

```
> worms[order(worms[,1]),1:6]
                Area Slope Vegetation Soil.pH
                                                Damp Worm.density
Oak, Mead
                 3.1
                            Grassland
                                           3.9 FALSE
North Gravel
                 3.3
                            Grassland
                                           4.1 FALSE
South Gravel
                3.7
                            Grassland
                                           4.0 FALSE
Gunness. Thicket.
                3.8
                                           4.2 FALSE
                                Scrub
Water Meadow
                 3.9
                               Meadow
                                           4.9
                                                TRUE
Pond. Field
                 4.1
                               Meadow
                                           5.0 TRUE
Pound Hill
                 4.4
                               Arable
                                           4.5 FALSE
Silwood.Bottom
               5.1
                               Arable
                                           5.2 FALSE
```


Sorting Data in Dataframes

More on sorting selected

sorted in descending order

> worms[rev(orde	er(worms[,4]))	,c(4,6)]
	Soil.pH Worm.	density
Silwood.Bottom	5.2	7
Pond.Field	5.0	6
Water.Meadow	4.9	8
Pound.Hill	4.5	5
Gunness.Thicket	4.2	6
North.Gravel	4.1	1
South.Gravel	4.0	2
Oak.Mead	3.9	2

str()

 str() provides details on a particular data structure.

```
> str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width: num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa", "versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
```


Flow Control

• If ... else

```
if (logical expression) {
   statements
} else {
   alternative statements
}
```

loops* else branch is optional

```
for(i in 1:10) {
    print(i*i)
}
```

```
i=1
while(i<=10) {
    print(i*i)
    i=i+sqrt(i)
}</pre>
```


Flow Control

- apply (arr, margin, fct)
 - Applies the function fct along some dimensions of the vector/matrix arr, according to margin, and returns a vector or array of the appropriate size.

```
> m
               Soil.pH Worm.density
Silwood.Bottom
                   5.2
                   5.0
Pond.Field
Water.Meadow
                   4.9
Pound, Hill
                   4.5
Gunness.Thicket 4.2
North.Gravel 4.1
South.Gravel
                  4.0
                   3.9
Oak.Mead
> apply(m, 1, sum)
 Silwood.Bottom
                   Pond.Field
                                  Water.Meadow
                                                    Pound. Hill Gunness. Thicket
           12.2
                          11.0
                                          12.9
                                                           9.5
                                                                          10.2
   North.Gravel South.Gravel
                                      Oak.Mead
                                           5.9
                           6.0
> apply(m, 2, sum)
     Soil.pH Worm.density
        35.8
                    37.0
```

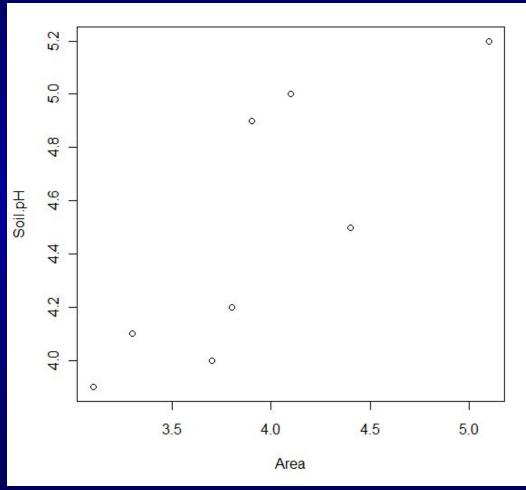

Flow Control

- lapply (list, fct) and sapply (list, fct)
 - To each element of the list li, the function fct is applied. The result is a list whose elements are the individual fct results.
 - Sapply, converting results into a vector or array of appropriate size

```
> fct = function(x) { return(c(x, x*x, x*x*x)) }
> sapply(1:5, fct)
      [,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 1 4 9 16 25
[3,] 1 8 27 64 125
```

```
> lapply(1:5, fct)
[[1]]
[1] 1 1 1
[[2]]
[1] 2 4 8
[[3]]
[1] 3 9 27
[[4]]
[1] 4 16 64
[[5]]
[1] 5 25 125
```

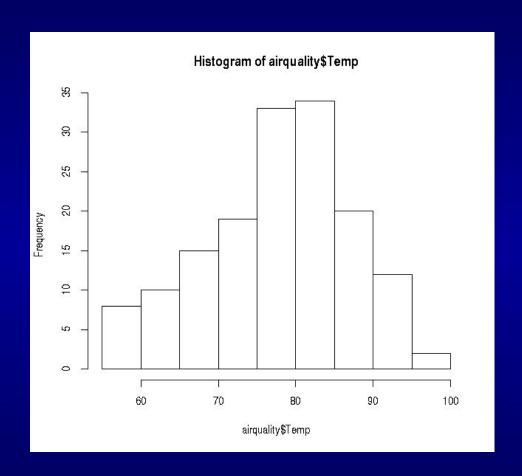

Create Statistical Summary


- Descriptive summary for numerical variables:
 - arithmetic mean;
 - maximum, minimum, median, 25 and 75 percentiles (first and third quartile);
- Levels of categorical variables are counted

> summa	ry (worms)									
Area		Slope		Vegetation		Soil.pH		Damp	Worm.density	
Min.	:3.100	Min.	:0.000	Arable	:2	Min.	:3.900	Mode :logical	Min.	:1.000
1st Qu	ı.:3.600	1st Qu	.:0.000	Grasslar	nd:3	1st Qu	.:4.075	FALSE: 6	1st Qu	.:2.000
Median	:3.850	Median	:1.500	Meadow	:2	Median	:4.350	TRUE :2	Median	:5.500
Mean	:3.925	Mean	:1.125	Scrub	:1	Mean	:4.475	NA's :0	Mean	:4.625
3rd Qu	1.:4.175	3rd Qu	.:2.000			3rd Qu	.:4.925		3rd Qu	.:6.250
Max.	:5.100	Max.	:2.000			Max.	:5.200		Max.	:8.000

Create Plots

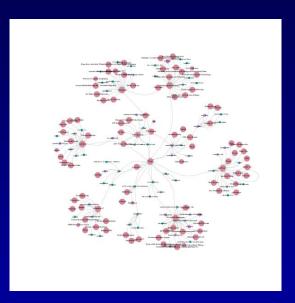
- plot(...)
 - Create scatter plot.
- > plot(Area, Soil.pH)

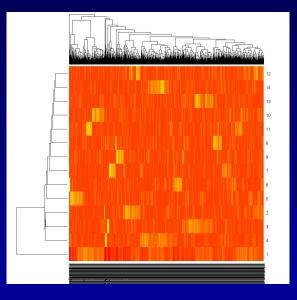


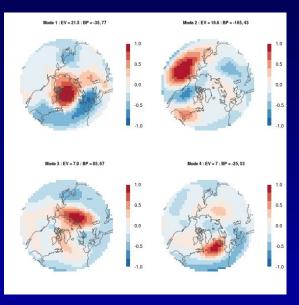
Create Plots

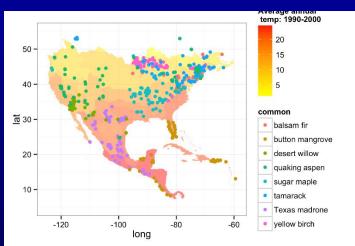
 Histograms: visual frequency distributions

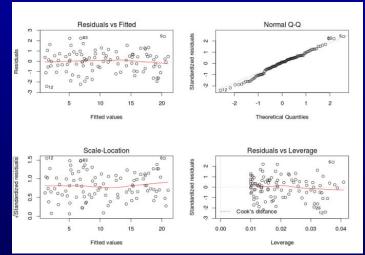
> hist(airquality\$Temp)






Other Common Plots


- Univariate:
 - histograms,
 - density curves,
 - Boxplots, quantile-quantile plots
- Bivariate:
 - scatter plots with trend lines,
 - side-by-side boxplots
- Several variables:
 - scatter plot matrices, lattice
 - 3-dimensional plots,
 - heatmap



Getting help

"?" Or "help"

Details about a specific command whose name you know (input arguments, options, algorithm, results):

e.g. >? t.test

or

>help(t.test)

```
t.test
                           package:ctest
                                                               R Documentation
Student's t-Test
Description:
      Performs one and two sample t-tests on vectors of data.
Usage:
     t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"),
              mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95, ...)
     t.test(formula, data, subset, na.action, ...)
Arguments:
        x: a numeric vector of data values.
        v: an optional numeric vector data values.
alternative: a character string specifying the alternative hypothesis, must be one of `"two.sided"' (default), `"greater"' or `"less"'. You can specify just the initial letter.
      mu: a number indicating the true value of the mean (or difference
            in means if you are performing a two sample test).
  paired: a logical indicating whether you want a paired t-test.
var.equal: a logical variable indicating whether to treat the two
```


Importing and exporting data

There are many ways to get data into R and out of R.

Most programs (e.g. Excel), as well as humans, know how to deal with rectangular tables in the form of tab-delimited text files.

```
> x = read.delim("filename.txt")
also: read.table, read.csv
```

> write.table(x, file="x.txt", sep="\t")

Saving your work

- history(Inf)
 - To review the command lines entered during the sessions
- savehistory("history.txt")
 - Save the history of command lines to a text file
- loadhistory("history.txt")
 - read it back into R
- save(list=ls(),file="all.Rdata")
 - The session as a whole can be saved as a binary file.
- load("c:\\temp\\ all.Rdata")
 - Read back saved sessions.

Additional Libraries and Packages

- Libraries
 - Comes with Package installation (Core or others)
 - library() shows a list of current installed
 - library must be loaded before use e.g.
 - library(rpart)
- Packages
 - Developed code/libraries outside the core packages
 - Can be downloaded and installed separately
 - Install.package("name")
 - There are currently 8,900 packages at http://cran.r-project.org/web/packages/
 - E.g. Rweka, interface to Weka.
 - ggplot2: very popular for 'building up' plots

Installing Packages on TACC Systems

- R handles package dependencies for you.
- Many packages compile C/Fortan.
- In some cases, additional libraries required.
 - libXXX.so not found.
 - Submit a consulting ticket.

Installing Packages on TACC Systems

> install.packages('FrF2')
Warning in install.packages("FrF2"):
 'lib =
 "/opt/apps/intel14/mvapich2_2_0/Rstats/3.0.3/lib64/R/library" is not writable
Would you like to use a personal library instead?
(y/n) y
Would you like to create a personal library
 ~/R/x86_64-unknown-linux-gnu-library/3.0
to install packages into? (y/n) y

mpicc -std=gnu99 -fPIC -openmp -mkl=parallel -O3 -xHost -L/opt/apps/intel/13/composer_xe_2013_sp1.1.106/mkl/lib/in tel64 -lmkl_rt -shared -fPIC -openmp -mkl=parallel -O3 -xHost -L/opt/apps/intel/13/composer_xe_2013_sp1.1.106/mkl/lib/in tel64 -lmkl_rt -o BsMD.so bsmd.o -lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core -liomp5 -lmkl_rt -lifport -lifcoremt -limf -lsvml -lm -lipgo -lirc -lpthread -lirc_s -ldl -L/opt/apps/intel14/mvapich2 2 0/Rstats/3.0.3/lib64/R/lib -IR

```
File Edit View Bookmarks Settings Help
 help.start()' for an HTML browser interface to help.
 Type 'q()' to quit R.
> install.packages('FrF2')
Installing package into '/home/00157/walling/R/x86 64-unknown-linux-gnu-library/3.0'
(as 'lib' is unspecified)
 -- Please select a CRAN mirror for use in this session ---
CRAN mirror
 1: O-Cloud
                                  2: Argentina (La Plata)
 3: Argentina (Mendoza)
                                   4: Australia (Camberra)
 5: Australia (Melbourne)
                                  6: Austria
                                  8: Brazil (BA)
 7: Belgium
 9: Brazil (PR)
                                  10: Brazil (RJ)
11: Brazil (SP 1)
                                  12: Brazil (SP 2)
13. Canada (BC)
                                  14. Canada (NS)
15: Canada (ON)
                                  16: Canada (QC 1)
17: Canada (QC 2)
                                  18: Chile
                                  20: China (Beijing 2)
19: China (Beijing 1)
21: China (Hefei)
                                  22: China (Xiamen
23: Colombia (Bogota)
                                  24: Colombia (Cali)
25: Czech Republic
                                  26: Denmark
27: Ecuador
                                  28: France (Lvon 1)
29: France (Lyon 2)
                                  30: France (Montpellier)
31: France (Paris 1)
                                  32: France (Paris 2)
33: Germany (Berlin)
                                  34: Germany (Bonn)
35: Germany (Goettingen)
                                  36: Greece
                                  38: India
39: Indonesia (Jakarta)
                                  40: Indonesia (Jember)
41: Iran
                                  42: Ireland
43: Italy (Milano)
                                  44: Italy (Padua)
45: Italy (Palermo)
                                  46: Japan (Hyogo)
47: Japan (Tokyo)
                                  48: Japan (Tsukuba)
49: Korea (Seoul 1)
                                  50: Korea (Seoul 2)
                                  52: Mexico (Mexico City)
51: Lebanon
53: Mexico (Texcoco)
                                  54: Netherlands (Amsterdam)
55: Netherlands (Utrecht)
                                  56: New Zealand
57: Norway
                                  58: Philippines
59: Poland
                                  60: Portugal
61: Russia
                                  62: Singapore
63: Slovakia
                                  64: South Africa (Cape Town)
65: South Africa (Johannesburg)
                                 66: Spain (A Coruña)
67: Spain (Madrid)
                                  68: Sweden
69: Switzerland
                                  70: Taiwan (Taichung)
71: Taiwan (Taipei)
                                  72: Thailand
73: Turkey
                                  74: UK (Bristol)
75: UK (London)
                                  76: UK (London)
                                  78: USA (CA 1)
77: UK (St Andrews)
79. LISA (CA 2)
                                  80. USA (TA)
81: USA (IN)
                                  82: USA (KS)
                                  84: USA (MT)
83: USA (MD)
85: USA (MO)
                                  86: USA (OH)
87: USA (OR)
                                  BR. USA (PA 1)
89: USA (PA 2)
                                  90: USA (TN)
91: USA (TX 1)
                                  92: USA (WA 1)
93: USA (WA 2)
                                  94: Venezuela
95: Vietnam
Selection:
                   () maverick
```


Further references

- R manual:
 - http://cran.r-project.org/manuals.html
- Task Views
 - https://cran.r-project.org/web/views/
- Community Blogs
 - http://r-bloggers.com

David Walling

walling@tacc.utexas.edu

Break till 10:30

