Integrating **Computational Science** into the Curriculum

> Steven I. Gordon sgordon@osc.edu





**Discovery Environment** 

### **Opportunities and Challenges**

- Workforce needs in computational science
- Changing how we teach
- Barriers to program implementation
- Competencies in computational science and data science

SEI

- Example Programs
- Resources

### **Preparing Students**

- Need for a workforce which understands both modeling and simulation principles and applications of models and data analysis at large scale
  - Requirements for high fidelity models of complex systems
  - Managing and understand large datasets data science
  - Applications across a wide range of science, social science, and increasingly humanities



### **Crucial Tools for Manufacturing**

- At Ford, HPC ...allows us to build an environment that continuously improves the product development process, speeds up time-to-market and lowers costs.
- The ongoing use of modeling and simulation resulted in new packaging and product design that propelled the brand to a leading market position over a several-year period.

### Ford EcoBoost Technology





Durable coffee package for P&G

SE



### **Will Pringles Fly?**



High Speed Conveying Create Vortices Shedding... ...'Rocking Chips' NOT GOOD!



XSEDE

### **Marketing Computational Science**







### **Myriad of Other Examples**

- Behavior of new and existing materials at multiple scales
- Climate change and its potential social and economic impacts

- Concentration of environmental contaminants and their impacts on ecosystems and human health
- Genetic markers and disease
- Analysis of huge datasets
  - Market and customer behavior
  - Genomic data







### **Changing How We Teach**

- Getting students actively involved in learning
  - Reducing traditional lectures
  - Increasing inquiry-based learning
- Ideally suited to instruction in computational science
  - Students need technical and analytical skills to create and test models and analyze data
  - Students enhance "soft" skills in teamwork and written and oral communication

### **Benefits to Students**

- Inquiry-based learning is more effective than traditional lecture oriented instruction
  - Students are actively engaged in the learning process
  - Students gain deeper insights and have higher retention rates for the information
  - Facilitates the integration of information across academic disciplines – math, science, engineering, computer science

### **Challenges to Changing the Curriculum**

- We tend to teach in the way we were taught
- Computational science is interdisciplinary
  - Faculty workloads fixed on disciplinary responsibilities
  - Coordination across departments is superficial
  - Expertise at universities is spotty
- Major time commitments are required to negotiate new programs and develop materials
- Curriculum requirements for related fields leave little room for new electives

• Change is hard



### **Pathways to Reform**

- Integrate computational examples into basic science and math courses
- Create general education courses that introduce simulation and modeling concepts and applications
- Combine those efforts to create formal concentrations, minors, or certificates in computational science
- XSEDE is working with institutions to assist with those activities



### What Do Students Need to Know?

- Considerable discussion across many disciplines
- Difficulty working from general conceptual ideas to specific skills and knowledge
- Several efforts focused on a competency based model to arrive at consensus of the essential knowledge base
- Competencies reviewed by both academic and nonacademic experts
- See

13

http://hpcuniversity.org/educators/competencies/



### **Ohio Minor Program Example**

- Undergraduate minor program
  - 4-6 courses
  - Varies based on major
- Faculty defined competencies for all students
- Reviewed by business advisory committee
- Program started in Autumn 2007
- Agreements to share students at distance, instructional modules, revenues, and teaching responsibilities

#### Competencies for Undergraduate Minor

Simulation and Modeling

**Programming and Algorithms** 

Differential Equations and Discrete Dynamical Systems

Numerical Methods

Optimization

Parallel Programming

**Scientific Visualization** 

One discipline specific course

Capstone Research/Internship Experience

**Discipline Oriented Courses** 

## Example Competencies Simulation and Modeling

- Explain the role of modeling in science and engineering
- Analyze modeling and simulation in computational science
- Create a conceptual model
- Examine various mathematical representations of functions
- Analyze issues in accuracy and precision
- Understand discrete and difference-based computer models
- Demonstrate computational programming utilizing a higher level language or modeling tool (e.g. Maple, MATLAB, Mathematica, Python, other)

SEDE

- Assess computational models
- Build event-based models
- Complete a team-based, real-world model project
- Demonstrate technical communication skills

### **Detailed Descriptors**

## Explain the role of modeling in science and engineering Descriptors:

Discuss the importance of modeling to science and engineering Discuss the history and need for modeling Discuss the cost effectiveness of modeling Discuss the time-effect of modeling (e.g. the ability to predict the weather) Define the terms associated with modeling to science and engineering List questions that would check/validate model results Describe future trends and issues in science and engineering Identify specific industry related examples of modeling in engineering (e.g., Battelle; P&G, material science, manufacturing, bioscience, etc.)

SENE

Discuss application across various industries (e.g., economics, health, etc.)



|               | Торіс                                                       | Course                    | Credit<br>Hours | Terms offered | R<br>e<br>q<br>u<br>i<br>r<br>e<br>d<br>/<br>E<br>I<br>e<br>c<br>t<br>t<br>i<br>v<br>e |
|---------------|-------------------------------------------------------------|---------------------------|-----------------|---------------|----------------------------------------------------------------------------------------|
| Prereguisites | Calculus                                                    | MATH 1151.xx              | 5               | Au, Sp        |                                                                                        |
|               |                                                             | MATH 1152.xx or Math 1172 | 5               | Au, Sp        |                                                                                        |
| Core Courses  |                                                             | MATH 1157                 | 3               | Sp            | R                                                                                      |
|               |                                                             | CSE 2021                  | 3               | Sp            | a                                                                                      |
|               | Simulation and Modeling<br>(Choose one of these courses)    | ISE 5100                  | 3               | Au, Sp        | u                                                                                      |
|               |                                                             | ME 5372                   | 3               | Au            | i                                                                                      |
|               |                                                             | MATSCEN 4321              | 3               | Au            | r<br>e<br>d                                                                            |
|               | Programming and Algorithms<br>(Choose one of these courses) | CSE 1222                  | 3               | Au, Sp        | R                                                                                      |
|               |                                                             | CSE 2221                  | 4               | Au, Sp, Su    | e<br>q<br>u<br>i<br>r<br>e<br>d                                                        |
|               | Numerical Methods<br>(Choose one of these courses)          | AERO 3581                 | 3               | Au            | R                                                                                      |
|               |                                                             | CSE 5361                  | 3               | Au, Sp        | e                                                                                      |
|               |                                                             | ECE 5510                  | 3               | Au            | Ч<br>Ц                                                                                 |
|               |                                                             | MATH 3607                 | 3               | Sp            | i                                                                                      |
|               |                                                             | MATH 5401                 | 3               | Sp            | r                                                                                      |
|               |                                                             | MECHENG 2850              | 3               | Au, Sp        |                                                                                        |
|               | and an and                                                  |                           |                 |               |                                                                                        |

| Discipline Specific Courses                                                              | Capstone Research/Internship<br>Experience (minimum 3<br>credits) | MATH 4998; CHEM 4998 or<br>other approved individualized<br>research credits **                                                                           | 3-5                                                                                              | Au, Sp<br>Au, Sp, May, Su, May<br>+ Su/ Au, Sp/Au, Sp                                       | e<br>q<br>u<br>ir<br>e<br>d      |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|
|                                                                                          | Discipline-specific<br>Computationally oriented<br>Course         | CSE 3521<br>CSE 3341<br>MICRBIO 5161H<br>BMI 5730<br>CHEM 5440<br>MATH 5651<br>PHYS 6810<br>LING 5801<br>LING 5802<br>ECON 4050<br>ECON 5001<br>GEOG 5221 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | Au, Sp<br>Au, Sp<br>N/A<br>Sp<br>Au<br>Sp<br>Au<br>Sp<br>Au<br>Sp<br>Au, Sp<br>Au, Sp<br>Au | R<br>e<br>q<br>u<br>ir<br>e<br>d |
|                                                                                          | Differential Equation and<br>Discrete Dynamical Course            | MATH 2255<br>MATH 2415<br>MATH 2568                                                                                                                       | 3                                                                                                | Su, Au, Wi, Sp<br>Su, Au, Wi, Sp<br>Su, Au, Wi, Sp                                          | E<br>I<br>c<br>ti<br>v<br>e      |
| Elective: Choose at least one<br>course from the following (3<br>credits total required) | Parallel Programming                                              | CSE 5441                                                                                                                                                  | 3                                                                                                | Au                                                                                          | E<br>I<br>c<br>ti<br>v<br>e      |
|                                                                                          | Scientific Visualization                                          | CSE 5544                                                                                                                                                  | 1-5                                                                                              | Su, Au, Wi, Sp                                                                              | E<br>I<br>c<br>ti<br>v<br>e      |
|                                                                                          |                                                                   |                                                                                                                                                           | 2                                                                                                | C                                                                                           | <b>_</b>                         |

| Data Analytics Minor - University of Mary Washington |                             |                                                |  |  |  |  |
|------------------------------------------------------|-----------------------------|------------------------------------------------|--|--|--|--|
| Total credits: 23                                    |                             |                                                |  |  |  |  |
| Required                                             | MATH 220                    | Introduction to Statistics                     |  |  |  |  |
| Courses                                              | MATH 200                    | Linear algebra                                 |  |  |  |  |
|                                                      | CPSC220 Computer Science 1  | Programming and Algorithms                     |  |  |  |  |
|                                                      | CPSC419                     | Data mining                                    |  |  |  |  |
|                                                      | CPSC420                     | Modeling and Simulation                        |  |  |  |  |
| One of these electives                               | CPSC230 Computer Science II | Data structures                                |  |  |  |  |
|                                                      | BUAD 400                    | Analytics Application Development              |  |  |  |  |
| One of these electives                               | BUAD 403                    | Foundations and Applications of Data Analytics |  |  |  |  |
|                                                      | CPSC 425                    | Parallel Processing                            |  |  |  |  |





### **Community College Curriculum**

- Courses to Prepare Students for Four Year Degree
- Required courses
  - Computational Science Methods
  - Modeling and Simulation
- One domain science course
  - Introduction to Computational Biology
  - Introduction to Computational Chemistry
  - Introduction to Computational Physics



### **Flexibility in Implementation**

- Adapt existing courses by adding computationally oriented modules
- Discipline oriented courses dependent on existing faculty expertise and interests
- Different subsets of required and optional competencies tied to major, required math, and example projects



### **Resources for Implementation**

- XSEDE assistance with program implementation
- Developing Faculty Expertise
- Shared courses for faculty and students

SEL

- Repository of materials
- Other opportunities

### **Assistance with Program Development**

- Campus visits
- Model programs and competencies to shorten the time to implementation
- Example curricula and course materials
- Assistance with program proposals



### **Developing Faculty Expertise**

- Faculty professional development workshops
  - Two to six day workshops on a variety of topics
    - Computational thinking

24

- Computational science education in science and engineering domains
- Focus on local/regional audiences to reduce travel costs

SEI

Subsidies for faculty to travel to workshops at other sites

# **Special Workshops for Faculty and Students**

- Development of synchronous and asynchronous education and training sessions
  - Multi-site broadcasts of workshops
  - Online training and education modules
  - Experimenting with full courses that can be widely shared for credit and non-credit inclusion in curricula (e.g. <u>https://www.xsede.org/xsede-</u> <u>offers-free-online-parallel-computing-course</u>)



### **Repository of Shared Materials**

- Developing a repository of computational science education materials
  - Reviewed by professional staff and faculty
  - Indexed by subject and a detailed competencybased ontology
  - Goal: trusted, comprehensive source of information for computational science educators
  - <u>http://hpcuniversity.org/resources/search/</u>

### **Some Other Opportunities**

- Journal of Computational Science Education
  - www.jocse.org
  - Peer reviewed articles on computational science education experiences

SEL

- Become a reviewer or contributor to the online repository
- SIGHPC Education Chapter

– <u>http://sighpceducation.acm.org/</u>



### **Opportunities for Students and Faculty**

SEDE

- Internships
  - Within XSEDE
  - List of opportunities on HPCU site
  - <u>Blue Waters Intern Program</u>
- Fellowships
  - Blue Waters Graduate Fellowship
- <u>XSEDE Scholars Program</u>



### **Discussion**

