Introduction to
Programming with OpenMP

Lars Koesterke
ASU: April 1, 2014
CSU: April 4, 2014

TAGCG TEXAS ADVANCED COMPUTING CENTER

Outline

* What is OpenMP?

* How does OpenMP work?
— Architecture

— Fork-Join model of parallelism
— Communication

* OpenMP Syntax
— Compiler Directives
— Runtime Library Routines
— Environment variables

* What’s new? OpenMP 3.1

TAGCC TEXAS ADVANCED COMPUTING CENTER

What is OpenMP?

* OpenMP stands for Open Multi-Processing

* An Application Programming Interface (API) for developing
parallel programs for shared memory architectures

 Three primary components of the API are:
— Compiler Directives
— Runtime Library Routines

— Environment Variables
e Standard specifies C, C++, and Fortran Directives & API

* http://www.openmp.org/ has the specification, examples,
tutorials and documentation

TAGCC TEXAS ADVANCED COMPUTING CENTER

Architecture

Private Private
Data Data

Thread

Shared Memory

Data: shared or private

Shared data: all threads can access
data in shared memory

Private data: can only be accessed by
threads that own it

Data transfer is transparent to the
programmer

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

OpenMP Fork-Join Parallelism

* Programs begin as a single process: master thread

* Master thread executes in serial mode until the parallel region
construct is encountered

 Master thread creates a team of parallel threads (fork) that
simultaneously execute statements in the parallel region

* After executing the statements in the parallel region, team threads
synchronize and terminate (join) but master continues

—t

time
execution o—3eial o Parallel . Serial ., _Paallel . Serial

e

Q
(] Qo
4 CPU o
6 CPU

Master Thread Multi-Threaded

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

How do threads communicate?

or better:
How do threads synchronize their work

I”

* Every thread has access to “global” memory (shared)

e All threads share the same address space

* Threads communicate by reading/writing to the global
memory

* Simultaneous updates to shared memory can create a race
condition. Results change with different thread scheduling

e Use mutual exclusion to avoid data sharing - but don’t use
too many because this will serialize performance

TAGCC TEXAS ADVANCED COMPUTING CENTER

OpenMP Syntax

Most of the constructs in OpenMP are compiler directives
#pragma omp construct [clause [[,]clause]...] C

ISomp construct [clause [[,]clause]...] F90
Example

#fpragma omp parallel num_threads(4) C

ISomp parallel num_threads(4) FO0
Function prototypes and types are in the file:

#include <omp.h> C

use omp _lib FO0

Most OpenMP constructs apply to a “structured block”, that is, a
block of one or more statements with one point of entry at the top
and one point of exit at the bottom

TAGCC TEXAS ADVANCED COMPUTING CENTER

OpenMP Constructs

OpenMP language
“extensions”

parallel control
structures

parallel control
work sharing

data

environment synchronization

runtime
functions, env.
variables

* governs flow of
control in the
program

parallel directive

_/

* distributes work
among threads

do/parallel do
and
Section directives

\/-

* specifies * coordinates thread
variables as execution

shared or private

shared and critical and

private atomic directives
clauses barrier directive

\/\/

*Runtime functions

omp_set_num_threads()
omp_get_thread_num()
OMP_NUM_THREADS
OMP_SCHEDULE

*Env. Variable

scheduling type

TACC

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

OpenMP Directives

* OpenMP directives are comments in source code that specify parallelism for

shared memory machines

FORTRAN : directives begin with the ISOMP, CSOMP or *SOMP sentinel.

F90 : ISOMP free-format

C/C++ . directives begin with the # pragma omp sentinel

 Parallel regions are marked by enclosing parallel directives
Work-sharing loops are marked by parallel do/for

Fortran
'SOMP parallel

'SOMP end parallel
'SOMP parallel do

do ...; enddo
'SOMP end parallel do

C/IC++
pragma omp parallel

pragma omp parallel for

{...}

for(){...}

TACC

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Parallel Region & Work-Sharing

Use OpenMP directives to specify Parallel Region &
Work-Sharing constructs

Parallel Code block Each Thread Executes
DO Work Sharing
SECTIONS Work Sharing
SINGLE One Thread (Work sharing)
End Parallel CRITICAL _ One Thread at a time
Parallel DO/for Work-Sharing
Parallel SECTIONS Parallel Region

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

Parallel Regions

1 #pragma omp parallel
2 {

3 code block

4 work (...) ;

S }

Line 1 Team of threads formed at parallel region

Lines 3-4 Each thread executes code block and subroutine calls. No
branching (in or out) in a parallel region

Line 5 All threads synchronize at end of parallel region (implied barrier)

Use the thread number to divide work among threads

TAGCC TEXAS ADVANCED COMPUTING CENTER

Parallel Regions

|SOMP PARALLEL
code block
call work(..)

1SOMP END PARALLEL

= Wb

Line 1 Team of threads formed at parallel region.

Lines 2-3 Each thread executes code block and subroutine calls. No
branching (in or out) in a parallel region.

Line 4 All threads synchronize at end of parallel region (implied barrier).

Use the thread number to divide work among.

TAGCC TEXAS ADVANCED COMPUTING CENTER

Parallel Region & Number of Threads

 For example, to create a 10-thread Parallel region:

double A[1000] ;

omp set num threads (10) ; But we need to make ID
private to the thread- later...

#pragma omp parallel e
{

int ID =ﬁ1p_get_thread_num();

foo(ID, A);
}

* Each thread redundantly executes the code within the structured
block

* Each thread calls foo(ID,A) forID =0 to 9

TAGCC TEXAS ADVANCED COMPUTING CENTER

Parallel Region & Number of Threads

 For example, to create a 10-thread Parallel region:

real :: A(1000); integer ::
call omp set num threads(10)

Somp parallel

ID

But we need to make ID
private to the thread- later...

ID‘%*omp_get_thread;pum()
call foo(ID, A);

'Somp end parallel

* Each thread redundantly executes the code within the structured

block

* Each thread calls foo(ID,A) forID =0 to 9

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

Parallel Regions & Modes

There are two OpenMP “modes”

e static mode (This is what you will be using!)

— Fixed number of threads --setin the OMP_ NUM THREADS env.

Or the threads may be set by a function call (or
clause) inside the code:

— omp set num threads runtime function
num_threads (#) clause

* dynamic mode (This is something for later, if needed at all)

— Number of threads can change under OS control from one parallel region
to another using:

Note: the user can only define the maximum number of threads, compiler can
use a smaller number

TAGCC TEXAS ADVANCED COMPUTING CENTER

Work-Sharing: Loop

1 1SOMP PARALLEL DO

2 do i=1,N

3 a(i) = b(1) + c(1i)
4 enddo

5

1SOMP END PARALLEL DO

Linel Team of threads formed (parallel region).
Line 2-4 Loop iterations are split among threads.
Line5 (Optional) end of parallel loop (implied barrier at enddo).

Each loop iteration must be independent of other iterations.

TAGCC TEXAS ADVANCED COMPUTING CENTER

Work-Sharing: Loop

1 #pragma parallel for

2 for (i=0; i<N; 1i++)

3 {

4 al[i] = b[i] + c[i];
3 {

Line1 Team of threads formed (parallel region).

Line 2-5 Loop iterations are split among threads.
implied barrier at enddo

Each loop iteration must be independent of other iterations.

TAGCC TEXAS ADVANCED COMPUTING CENTER

Work-Sharing: Sections

1SOMP PARALLEL SECTIONS
ISOMP SECTION

call work 1()
1$SOMP SECTION

call work 2()
ISOMP END SECTIONS

onOdkdWMNR

Line1 Team of threads formed (parallel region).
Line 2-5 One thread is working on each section.
Line 6 End of parallel sections with an implied barrier.

Scales only to the number of sections.

TAGCC TEXAS ADVANCED COMPUTING CENTER

Work-Sharing: Sections

#pragma omp section
{ work_2(); }

1 #pragma omp sections
2 {

3 {#pragma omp section
4 {

5 work 1();

6 }

7

8

)

}

Line1 Team of threads formed (parallel region).
Line 3-8 One thread is working on each section.
Line 9 End of parallel sections with an implied barrier.

Scales only to the number of sections.

TAGCC TEXAS ADVANCED COMPUTING CENTER

OpenMP Parallel Constructs

Replicated : Work blocks are executed by all threads.
Work-Sharing : Work is divided among threads.

PARALLEL
{codel}
DO
PARALLEL DO do I = 1,N*4
do I = 1,N*4 {code2}
PARALLEL {code} end do
{code} end do {code3}
END PARALLEL END PARALLEL DO END PARALLEL
code1l code1 code1 code1
{ 1 1 1=1,N I=N+{ 2N I=2N41,3N |=3T1 AN
code code code code code code codé code y y
I=1,N I=N+{l,2N I=2N+1,3N 1=3N+1,4N
code2 codg2 codg2 code2
v y y
code3 code3 code3 code3
Replicated Work-Sharing v Combined

TAGCC TEXAS ADVANCED COMPUTING CENTER

OpenMP Clauses

Clauses control the behavior of an OpenMP directive:

1.

A

Data scoping (Private, Shared, Default)
Schedule (Guided, Static, Dynamic, etc.)
Initialization (e.g. COPYIN, FIRSTPRIVATE)
Whether to parallelize a region or not (if-clause)
Number of threads used (NUM_THREADS)

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

Schedule Clause

schedule(static)
Each CPU receives one set of contiguous iterations

schedule(static, C)
lterations are divided round-robin fashion in chunks of size C

schedule(dynamic, C)
lterations handed out in chunks of size C as CPUs become available

schedule(guided, C)

Each of the iterations are handed out in pieces of exponentially decreasing
size, with C minimum number of iterations to dispatch each time

schedule (runtime)

Schedule and chunk size taken from the OMP_SCHEDULE
environment variable

TAGCC TEXAS ADVANCED COMPUTING CENTER

Comparison of Scheduling Options

name type chunk chunk size chunk # Zt\:‘::rr?i:
simple static simple no N/P P static
interleaved simple yes C N/C static
fjiyr:mzlneqic dynamic optional C N/C dynamic
guided guided optional ?rzcn:e;s}i;g fNe/VE/:er AUkl dynamic
runtime runtime no varies varies varies

compute
overhead

lowest

low

medium

<‘dynamic’

varies

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

Example - schedule(static,16), threads =4

#pragma omp parallel do schedule(static,16)

do i=1,128
A(i1)=B(1)+C (1)
enddo
thread0: do i=1,16 thread2: do i=33,48
A(i)=B(i)+C (1) A(i)=B(i)+C (i)
enddo enddo
do i=65,80 do i = 97,112
A(i)=B(i)+C (1) A(i)=B(i)+C (1)
enddo enddo
threadl: do i=17,32 thread3: do i=49,64
A(i)=B(i)+C (i) A(i)=B(i)+C (i)
enddo enddo
do i = 81,96 do i = 113,128
A(i)=B(i)+C (1) A(i)=B(i)+C (i)
enddo enddo

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

TACC

OpenMP Data Environment

 Data scoping clauses control the sharing behavior of
variables within a parallel construct.

* Theseinclude shared, private, firstprivate,
lastprivate, reduction clauses

Default variable scope:

1. Variables are shared by default
2. Global variables are shared by default

3. Automatic variables within subroutines called from within a
parallel region are private (reside on a stack private to each
thread), unless scoped otherwise

Default scoping rule can be changed with default clause

TA@@ TEXAS ADVANCED COMPUTING CENTER

Private & Shared Data

SHARED - Variable is shared (seen) by all processors.
PRIVATE - Each thread has a private instance (copy) of the variable.

Defaults: All DO LOOP indices are private, all other variables are shared.

!SOMP PARALLEL DO SHARED (A,B,C,N) PRIVATE (i)
do i=1,N
A(i) = B(i) + C(1)
enddo
1SOMP END PARALLEL DO

All threads have access to the same storage areas for A, B, C, and N, but each loop has
its own private copy of the loop index, i.

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

Private & Shared Data

shared - Variable is shared (seen) by all processors
private - Each thread has a private instance (copy) of the variable
Defaults: The for-loop index is private, all other variables are shared

#pragma omp parallel for shared(a,b,c,n) private(i)
for (i=0; i<n; i++){
a[i] = b[1] + c[i];
}

All threads have access to the same storage areas for a, b, ¢, and n, but each loop
has its own private copy of the loop index, i

TAGCC TEXAS ADVANCED COMPUTING CENTER

Private Data Example

* Inthe following loop, each thread needs its own PRIVATE copy of TEMP.

 If TEMP were shared, the result would be unpredictable since each processor would be writing and
reading to/from the same memory location.

1$SOMP PARALLEL DO SHARED (A,B,C,N) PRIVATE (temp, i)
do i=1,N
temp = A(i)/B(1i)
C(i) = temp + cos(temp)
enddo
1SOMP END PARALLEL DO

* Alastprivate(temp) clause will copy the last loop(stack) value of temp to the (global) temp storage
when the parallel DO is complete.

* Afirstprivate(temp) would copy the global temp value to each stack’s temp.

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ N TEXAS ADVANCED COMPUTING CENTER

Private Data Example

* Inthe following loop, each thread needs its own private copy of temp

* |f temp were shared, the result would be unpredictable since each thread would
be writing and reading to/from the same memory location

#pragma omp parallel for shared(a,b,c,n) private(temp,i)
for (i=0; i<n; i++){

temp = a[i] / b[i];
c[i] = temp + cos(temp)

* A lastprivate(temp) clause will copy the last loop(stack) value of temp to the
(global) temp storage when the parallel DO is complete.

* A firstprivate(temp) would copy the global temp value to each stack’s temp.

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ N TEXAS ADVANCED COMPUTING CENTER

Reduction

Operation that combines multiple elements to form a single result, such as a summation.

A variable that accumulates the result is called a reduction variable.

In parallel loops reduction operators and variables must be declared.

real*8 asum, aprod
asum = 0.
aprod = 1.
1SOMP PARALLEL DO REDUCTION (+:asum) REDUCTION (*:aprod)
do i=1,N
asum

asum + a (i)

aprod aprod * a(1i)
enddo
!SOMP END PARALLEL DO

print*, asum, aprod

* Each thread has a private ASUM and APROD, initialized to the operator’s identity, 0 & 1, respectively.

After the loop execution, the master thread collects the private values of each thread and finishes the (global)
reduction.

TAGCC " TEXAS ADVANCED COMPUTING CENTER

Reduction

e Operation that combines multiple elements to form a single result
* Avariable that accumulates the result is called a reduction variable
* In parallel loops reduction operators and variables must be declared

float asum, aprod;

asum = 0.;

aprod = 1.;

#pragma omp parallel for reduction(+:asum) reduction (*:aprod)

for (i=0; i<n; 1i++){
asum = asum + a[i];
aprod = aprod * af[i];

}

Each thread has a private asum and aprod, initialized to the operator’s identity

* After the loop execution, the master thread collects the private values of each
thread and finishes the (global) reduction

31 THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

Synchronization

* Synchronization is used to impose order constraints
and to protect access to shared data

* High-Level Synchronization
— critical
— atomic
— barrier
— ordered

* Low-Level Synchronization
— locks

TAGCC TEXAS ADVANCED COMPUTING CENTER

Synchronization: Critical/Atomic Directives

* When each thread must execute a section of code serially the region must be marked with CRITICAL / END
CRITICAL directives.

* Use the ISOMP ATOMIC directive if executing only one operation serially.

1SOMP PARALLEL SHARED (sum,X,Y)

1SOMP CRITICAL 1$SOMP PARALLEL SHARED (X,Y)

call update (x)
call update(y)
sum=sum+1

'SOMP END CRITICAL

1SOMP ATOMIC
sum=sum+1

1SOMP END PARALLEL

!SOMP END PARALLEL

|

Master Thread CRITICAL section

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

Synchronization: Critical/Atomic Directives

 When each thread must execute a section of code serially the region must
be marked with critical/end critical directives

* Use the #pragma omp atomic directive if executing only one operation

serially

#pragma omp critical
{
update (x) ;
update (y) ;
sum=sum+1 ;

}

!SOMP END PARALLEL

#pragma omp parallel shared(sum,x,y) | #pragma omp parallel shared (sum)

{
#pragma omp atomic
sum=sum+1 ;

time

I
1

-
1 L}
}

/ :

Master Thread

J

~
CRITICAL section or atomic operations

TACC

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Synchronization: Single/ Directives

* Only one thread executes the statements in the single/master region

* Single: An arbitrary thread is chosen and the is an implied barrier at the end of the single construct

'$OMP PARALLEL SHARED (sum,x,y) #pragma omp parallel shared(sum,x,y)
1 $OMP SINGLE #pragma omp single

icount = icount + 1 {
1SOMP END SINGLE icount = icount + 1

call workl (x) }

call work2(y) workl (x) ;
- work2 (y) ;
1SOMP END PARALLEL e

1SOMP END PARALLEL

- =l

Master Thread _ _
Single region

Barrier at the end

TAGCC TEXAS ADVANCED COMPUTING CENTER

Synchronization: /Master Directives

* Only one thread executes the statements in the single/master region

* Single: An arbitrary thread is chosen and the is an implied barrier at the end of the single construct

'$OMP PARALLEL SHARED (sum,x,y) #pragma omp parallel shared(sum,x,y)
' SOMP MASTER #pragma omp master

icount = icount + 1 {
! SOMP END MASTER icount = icount + 1

call workl (x) }

call work2 (y) workl (x) ;
“ e work2 (y) ;
'SOMP END PARALLEL -

!SOMP END PARALLEL

| —
; >
>

Master Thread _
Master region

No barrier at the end, other threads jump ahead

TAGCC TEXAS ADVANCED COMPUTING CENTER

Synchronization: Barrier

e Barrier: Each thread waits until all threads arrive

#pragma omp parallel shared (A, B, C) private (id)
{
id=omp get thread num() ;
A[1d] = big calcl(id);
#pragma omp barrier
#pragma omp for
for (1=0; i<N;i++) {
Cli]=big calc3(i,A);
}< Implicit barrier
#pragma omp for nowait
for (1=0;i<N; i1++) {
Bl[i]=big calc2(C, 1);
}< No implicit barrier due to nowait
A[1d] = big calc4(id);
} < Implicit barrier

TACG 37 TEXAS ADVANCED COMPUTING CENTER

Mutual Exclusion: Lock Routines

When each thread must execute a section of code serially locks provide a more
flexible way of ensuring serial access than CRITICAL and ATOMIC directives

call OMP INIT LOCK (maxlock)
1SOMP PARALLEL SHARED (X,Y)

call OMP set lock (maxlock)
call update (x)
call OMP unset lock (maxlock)

1SOMP END PARALLEL
call OMP DESTROY LOCK (maxlock)

TAGCC TEXAS ADVANCED COMPUTING CENTER

Synchronization: Ordered

 The ordered region executes in the sequential order

#pragma omp parallel private (tmp)
#pragma omp for ordered reduction (+:countVal)
for (1=0;1<N;i++) {
tmp = foo(1);
#pragma omp ordered
print tmp;
}

ISomp parallel private (tmp)
ISomp do ordered reduction (+:countVal)
do 1i=1, n

tmp = foo (1)

ISomp ordered

write (0,*) tmp

}
TAGCC TEXAS ADVANCED COMPUTING CENTER

Mutual Exclusion Overhead

OMP exclusion directive cycles
OMP_SET LOCK 330
OMP_UNSET LOCK 330
OMP_ATOMIC 480
OMP_CRITICAL 510

All measurements made in dedicated mode

TAGCC TEXAS ADVANCED COMPUTING CENTER

* When a work-sharing
region is exited, a barrier is
implied - all threads must
reach the barrier before
any can proceed.

» By using the NOWAIT
clause at the end of each
loop inside the parallel
region, an unnecessary
synchronization of threads
can be avoided.

Nowait

! SOMP
! SOMP

1 SOMP
! SOMP

! SOMP
! SOMP

PARALLEL
DO
do i=1,n
work (1)
enddo
END DO NOWAIT
DO schedule (dynamic, k)
do i=1,m
x(1)=y(1)+z (1)
enddo
END DO
END PARALLEL

TACC

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Nowait

 When a work-sharing
region is exited, a barrier is
implied - all threads must
reach the barrier before
any can proceed.

* By using the NOWAIT
clause at the end of each
loop inside the parallel
region, an unnecessary
synchronization of threads
can be avoided.

#pragma omp parallel

{
#pragma omp for nowait
{
for (i=0; i<n; i++)
{work (1) ;}
}
#pragma omp for schedule (dynamic, k)
{
for (i=0; i<m; i++)
{x[i]=y[i]+z[1];}
}
}

TACC

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Runtime Library Routines

function

description

omp_get_num_threads()
omp_get_thread num()

omp_get_num_procs()

omp_in_parallel()
omp_set_num_threads(#)
omp_get_dynamic()

omp_set_dynamic()

Number of threads in team, N
Thread ID {0 -> N-1}

Number of machine CPUs

True if in parallel region & multiple thread
executing

Set the number of threads in the team
True if dynamic threading is on

Set state of dynamic threading (true/false)

TACC

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Environment Variables

variable description

OMP_NUM_THREADS int_literal Set to default no. of threads to use

Control how “omp for
schedule(RUNTIME)”
loop iterations are scheduled

OMP_SCHEDULE “schedule],
chunk_size]”

TRUE/FALSE for enable/disable

OMP_DYNAMIC dynamic threading

TAGCC TEXAS ADVANCED COMPUTING CENTER

OpenMP Wallclock Timers

real*8 :: omp get wtime, omp get wtick() (Fortran)
double omp get wtime (), omp get wtick(); (C)

double t0, tl, dt, res;

t0 = omp get wtime() ;

<work>

tl = omp get wtime();

dt = t1 - t0;

res = 1.0/omp get wtick() ;

printf (“Elapsed time = %1f\n”,dt);
printf (“clock resolution = %$1f\n”, res);

TAGCC TEXAS ADVANCED COMPUTING CENTER

NUM_THREADS clause

Use the NUM_THREADS clause to specify the number of threads to execute a
parallel region

!SOMP PARALLEL NUM _ THREADS (scalar integer expression)

<code block>
!SOMP End PARALLEL

where scalar integer expression must evaluate to a positive integer

NUM_THREADS supersedes the number of threads specified by the
OMP_NUM_THREADS environment variable or that set by the
OMP_SET NUM THREADS function

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

NUM_THREADS clause

 Use the NUM_THREADS clause to specify the number of threads to
execute a parallel region

#fipragma omp parallel num threads(scalar int expression)

{
<code block>

}
where scalar integer expression must evaluate to a positive integer

* NUM_THREADS supersedes the number of threads specified by the
OMP_NUM_THREADS environment variable or that set by the
OMP_SET_NUM_THREADS function

TAGCC TEXAS ADVANCED COMPUTING CENTER

OpenMP 3.0

* First update to the spec since 2005

 Tasking: move beyond loops with generalized tasks and support
complex and dynamic control flows

* Loop collapse: combine nested loops automatically to expose more
concurrency

* Enhanced loop schedules: Support aggressive compiler
optimizations of loop schedules and give programmers better
runtime control over the kind of schedule used

* Nested parallelism support: better definition of and control over
nested parallel regions, and new API routines to determine nesting

structure

TAGCC TEXAS ADVANCED COMPUTING CENTER

Loop Collapse

* Allow collapsing of perfectly nested loops

* Will form a single loop and then parallelize it:

!Somp parallel do collapse(2)
do i=1,n
do j=1,n

TAGCC TEXAS ADVANCED COMPUTING CENTER

Tasks Parallelism

* Allows to parallelize irregular problems
— Recursive loops
— Unbounded algorithms

— Threads can jump between tasks

TAGCC TEXAS ADVANCED COMPUTING CENTER

What is a Task?

* A specific instance of executable code and its data environment,
generated when a thread encounters a task construct or a
parallel construct

* Tasks consist of

— Code to execute
— Data environment
— Internal control variables (new from 2.5)

* Each encountering thread creates a new task which packages its
own code and data

 Execution of the new task could be immediate, or deferred until
later

 Can be nested into
— Another task or a work sharing construct

TAGCC TEXAS ADVANCED COMPUTING CENTER

What is a Task?

e Tasks have been fully integrated into OpenMP

* Note: OpenMP has always had tasks but they were never
called that way before the 3.0 release!

— Thread encountering parallel construct packages up a set
of implicit tasks, one per thread

— Team of threads is created

— Each thread in team is assigned to one of the tasks (and
tied to it)

— Barrier holds original master thread until all implicit tasks
are finished

* Now we have a way to create a task explicitly for the team to
execute

TAGCC TEXAS ADVANCED COMPUTING CENTER

Tasks: Usage

Task Construct:

#pragma omp task [clause]],]clause] ...]
structured-block

where clause can be

* Data scoping clauses

— shared (list), private (list), firstprivate (list), default(shared | none)
e Scheduling clauses

— untied
* Other clauses

— if (expression)

TAGCC TEXAS ADVANCED COMPUTING CENTER

Loop Nesting

: rial
execution e—>2"2

ested Parallel Region Serial

N
o
¢
[
:

O
o—

Master Thread

While OpenMP 3.0 supports nested parallelism, many
implementations may ignore the nesting by serializing the inner
parallel regions

TAGCC TEXAS ADVANCED COMPUTING CENTER

References

http://www.openmp.org/

« Parallel Programming in OpenMP, by Chandra,Dagum,
Kohr, Maydan, McDonald, Menon

« Using OpenMP, by Chapman, Jost, Van der Pas
(OpenMP2.5)

http://www.nic.uoregon.edu/iwomp2005/iwomp2005 tutorial openmp rvdp.pdf

http://webct.ncsa.uiuc.edu:8900/public/ OPENMP/

TAGCC " TEXAS ADVANCED COMPUTING CENTER

Thank you very much

lars@tacc.utexas.edu

Please participate in our survey
http://bit.ly/CSUXSEDE

TAGCC TEXAS ADVANCED COMPUTING CENTER

Additional material for Fortran Users

TAGCC TEXAS ADVANCED COMPUTING CENTER

Default variable scoping
(Fortran example)

Program Main

Common /vars/ y(nmax)

n=nmax; y=0.0

1SOMP Parallel do
do j=1,n
call Adder(x,n,3j)
end do

End Program Main

Integer, Parameter ::
Integer :: n, j
Real*8 .- x(n,n)

nmax=100

Subroutine Adder(a,m,col)
Common /vars/ y(nmax)

SAVE array sum

Integer :: i, m
Real*8 :: a(m,m)
do i=1,m

y (col)=y(col)+a(i,col)
end do

array sum=array sum+y (col)

End Subroutine Adder

TACC

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Default data scoping in Fortran (cont.)

Variable Scope Is use safe? Reason for scope
n shared yes declared outside parallel construct
| private yes parallel loop index variable
X shared yes declared outside parallel construct
y shared yes common block
i private yes parallel loop index variable
m shared yes actual variable n is shared
a shared yes actual variable x is shared
col private yes actual variable j is private
array_sum shared no declared with SAVE attribute

TACG TEXAS ADVANCED COMPUTING CENTER

Workshare directive

* WORKSHARE directive enables parallelization of Fortran 90 array expressions and
FORALL constructs

Integer, Parameter :: N=1000
Real*8 :: A(N,N), B(N,N), C(N,N)
! SOMP WORKSHARE
A=B+C
!SOMP End WORKSHARE

Enclosed code is separated into units of work

All threads in a team share the work

Each work unit is executed only once

A work unit may be assigned to any thread

TAGCC TEXAS ADVANCED COMPUTING CENTER

Reduction on array variables

e Supported in Fortran only!

e Array variables may now appear in the REDUCTION clause

Real*8 :: A(N), B(M,N)

Integer :: 1, j

A(l:m) = 3.

ISOMP Parallel Do Reduction (+:A)
do i=1l,n

A(l:m)=A(1:m)+B(1l:m,1i)

end do

1SOMP End Parallel Do

* Assumed size and allocatable arrays are not supported

e Variable must be shared in the enclosing context

TAGCC TEXAS ADVANCED COMPUTING CENTER

