
Parallel Visualization At TACC
Greg Abram

Visualization Problems

Small problems:
• Data are small and easily moved
• Office machines and laptops are

adequate for visualization
* With thanks to Sean Ahern for the metaphor

Medium problems:
• Data are costly to move over WAN
• Visualization requires lots of

memory, fast CPU and GPU

Large problems:
• Data are impractical to move over

WAN, costly to move over LAN
• Visualization requires parallel

systems for enough memory, CPU
and GPU

Huge problems:
• Data cannot be moved off system

where it is computed
• Visualization requires equivalent

resources as source HPC system

Visualization Problems
Huge problems

Don’t move the data; in-situ and
co-processing visualization
minimizes or eliminates data I/O

Medium and small problems
Move your data to visualization
server and visualize using high-
performance systems at TACC

Large problems
Move your data to visualization
server and visualize using parallel
high-performance systems and
software at TACC

* With thanks to Sean Ahern for the metaphor

Visualization Servers: Maverick

• Maverick (TACC) - HP

– 132 20-core Ivy Bridge nodes
– 256GB system memory per node
– Nvidia Tesla K40 GPU
– FDR InfiniBand interconnect
– Designed for interactive visualization

Visualization Servers: Stampede

• Access to Stampede file systems
• 128 Vis nodes:

– 16 Intel Sandy Bridge cores
– 32 GB RAM
– 1 Nvidia K20 GPU

• 16 Large Memory Nodes
– 32 Intel Sandy Bridge cores
– 1 TB RAM
– 2 Nvidia K20 GPU

• Access (see Stampede User Guide):
Run sbatch job.vnc on Longhorn using vis, largemem queues

Parallel Visualization Software

• Good news! Paraview and Visit both run in
parallel on and look just the same!

• Client/Server Architecture
– Allocate multiple nodes for vncserver job
– Run client process serially on root node
– Run server processes on all nodes under MPI

Interactive Remote Desktop

VNC

server

VNC viewer

system
login
node

Port forwarding

Internet

System Vis Nodes

Remote System …

…

Remote Serial Visualization

System
login
node

Port forwarding

Internet

System Vis Nodes

Remote System …

…

visualization process

Visualization GUI

Remote Parallel Visualization

System
login
node

Port forwarding

Internet

System Vis Nodes

Remote System …

…

Visualization
 client process

Visualization GUI

MPI
Process

Allocated node set

Parallel
visualization

 server process

Parallel Session Settings
• Number of nodes N

– more nodes gives you:
• More total memory
• More I/O bandwidth (up to a limit determined by file system and

other system load)
• More CPU cores, GPUs (though also affected by wayness)

• Number of processes n
– Total processes to run on each node
– Paraview and Visit are not multi-threaded
– N < k gives each process more memory, uses fewer CPU cores

for k = number of cores per node
• Longhorn portal:

– Number of Nodes and processes are pulldowns
• sbatch –N [#nodes] –n [#processes] job

Running Paraview In Parallel
• Run Paraview as before
• In a separate text window:

module load python paraview
ibrun tacc_xrun pvserver

• In Paraview GUI:
– File->Connect to bring up the Choose Server dialog
– Set the server configuration name to manual
– Click Configure and, from Startup Type, select Manual and Save
– In Choose Server dialog, select manual and click Connect

In client xterm, you should see Waiting for server… and in the
server xterm, you should see Client connected.

Running Visit In Parallel

• Run Visit as before; it’ll do the right thing

Data-Parallel Visualization Algorithms

• Spatially partitioned data are distributed to
participating processes…

Data-Parallel Algorithms

• Sometimes work well…

• Iso-contours

– Surfaces can be computed in each
partition concurrently and (with
ghost zones) independently

– However, since surfaces may not

be evenly distributed across
partitions, may lead to poor load
balancing

Data-Parallel Algorithms

• Sometimes not so
much…

• Streamlines are computed
incrementally

 P0 P1 P2 P3

Parallel Rendering

• Collect-and-render
– Gather all geometry on 1

node and render

• Render-and-composite
– Render locally, do depth-

aware composite

• Both PV and Visit have
both, offer user control
of which to use

Parallel Data Formats
• To run in parallel, data must be distributed among parallel

subprocess’ memory space

• Serial formats are “data-soup”

– Data must be read, partitioned and distributed

• Parallel formats contain information enabling each
subprocess to import its own subset of data simultanously
– Maximize bandwith into parallel visualization process
– Minimize reshuffling for ghost-zones

• Network file system enables any node to access any file

Paraview XML Parallel Formats
• Partition data reside in separate files:

– .vti regular grids, .vts for structured grids …
– Example: One of 256 partitions of a 20403 volume: c-2_5_5.vti

<?xml version="1.0"?>
<VTKFile type="ImageData" version="0.1" byte_order="LittleEndian">
 <ImageData WholeExtent="510 765 1275 1530 1275 1530" Origin="0 0 0" Spacing="1 1 1">
 <Piece Extent="510 765 1275 1530 1275 1530">
 <PointData Scalars="Scalars_">
 <DataArray type="Float32" Name="Scalars_" format="binary" RangeMin="0.0067922524177" RangeMax="1.7320507765">
 ….. Encoded data looking lijke ascii gibberish
 </DataArray>
…

• Global file associates partitions into overall grid
– .pvti regular grids, .pvts for structured grids …
– Example: global file for 20403 volume: c.pvti

<?xml version="1.0"?>
<VTKFile type="PImageData" version="0.1" byte_order="LittleEndian" compressor="vtkZLibDataCompressor">
 <PImageData WholeExtent="0 2040 0 2040 0 2040" GhostLevel="0" Origin="0 0 0" Spacing="1.0 1.0 1.0">
 <PPointData Scalars="Scalars_">
 <PDataArray type="Float32" Name="Scalars_"/>
 </PPointData>
<Piece Extent="0 255 0 255 0 255" Source="c-0_0_0.vti"/>
<Piece Extent="0 255 0 255 255 510" Source="c-0_0_1.vti"/>
…
<Piece Extent="510 765 1275 1530 1275 1530" Source="c-2_5_5.vti"/>
…

SILO Parallel Format

• “Native” VisIt format
– Not currently supported by Paraview

• Built on top of lower-level storage libraries
– NetCDF, HDF5, PDB

• Multiple partitions in single file simplifies data
management
– Directory-like structure
– Parallel file system enables simultaneous read access to file by

multiple nodes
– Optimal performance may be a mix

• note that write access to silo files is serial

Xdmf Parallel Format

• Common parallel format
– Seen problems in VisIt

• Also built on top of lower-level storage libraries
– NetCDF, HDF5

• Multiple partitions in single file simplifies data
management
– Also directory-like structure
– Also leverages Parallel File System
– Also optimal performance may be a mix

Data Location

• Data must reside on accessible file system
• Movement within TACC faster than across Internet, but

can still take a long time to transfer between systems

Lonestar Lustre PFSs

Lonestar

Ranch

TACC
LAN

Internet

Ranger Spur

Ranger Lustre PFS Longhorn Lustre PFS

Longhorn

Stampede Lustre PFSs

Stampede

Post-Processing

1. Simulation writes periodic
timesteps to storage

2. Visualization loads

timestep data from
storage, runs visualization
algorithms and interacts
with user

…

…

…

…

Storage

Viz host

Sim host

Postprocessing On HPC Systems
 and Longhorn

…

…

…

…

Longhorn Lustre PFS

Longhorn

Lonestar /Stampede

System Lustre PFS

Postprocessing On Stampede

…

…

Stampede

Lustre PFS

1. Simulation runs on
compute nodes, writes
data to Lustre file system

2. Data is read back into
vis nodes for visualization

Huge Data: Co- and In-Situ Processing

• Visualization requires equivalent horsepower
– Not all visualization computation is accelerated
– Increasingly, HPC platforms include acceleration

• I/O is expensive: simulation to disk, disk to
disk, disk to visualization
– I/O is not scaling with compute
– Data is not always written at full spatial, temporal

resolution

Huge Data: Co- and In-Situ Processing

• Visualization requires equivalent horsepower
– Not all visualization computation is accelerated
– Increasingly, HPC platforms include acceleration

• I/O is expensive: simulation to disk, disk to
disk, disk to visualization
– I/O is not scaling with compute
– Data is not always written at full spatial, temporal

resolution

Co-Processing

• Perform simulation and
visualization on same host
– Concurrently
– Communication:

• Many-to-many
• Using high-performance

interconnect to communicate

…

…

In-Situ Processing

…

…

• Incorporate visualization
directly into simulation

• Run visualization algorithms on
simulation’s data

• Output only visualization
results

Co- and In-Situ Processing

• Not a panacea
– Limits scientist’s exploration of the data

• Can’t go back in time
• May pay off to re-run the simulation

– Impacts simulation
• May require source-code modification of simulation
• May increase simulation node’s footprint
• May affect simulation’s stability

– Simulation host may not have graphics accelerators
• … but visualizations are often not rendering-limited
• … and more and more HPC hosts are including accelerators

Co- and In-Situ Status

• Bleeding edge
• Coprocessing capabilities in Paraview, VisIt

– Did I say bleeding edge?

• In-Situ visualization is not simple
• We can help

Summary

• Parallel visualization is only partly about
upping the compute power available, its also
about getting sufficient memory and I/O
bandwidth.

• I/O is a really big issue. Planning how to write
your data for parallel access, and placing it
where it can be accessed quickly, is critical.

• The TACC visualization groups are here to help
you!

Longhorn Architecture

login1.longhorn
(longhorn)

Longhorn
Visualization

Portal

Login Nodes

Vis Nodes
48 GB RAM

2 GPUs

$HOME

$SCRATCH

Longhorn File Systems

Compute Nodes

Queues
normal

/ranger/share

/ranger/work

/ranger/scratch

Ranger File Systems

largemem
request

Read-Only File System Access

Read/Write File System Access

Job submission

normal
development
long
request

Lustre Parallel File System

NFS File System

Stampede Architecture

4x login nodes
stampede.tacc.utexas.edu

Login Nodes

128 Vis Nodes
32 GB RAM

16 cores
Nvidia K20 GPU

Compute Nodes

Queues
vis, gpu

SHARE

WORK

SCRATCH

Stampede
Lustre File Systems

largemem

Read/Write File System Access

Job submission

normal, serial,
development,
request

~6300 Compute Nodes
32 GB RAM

16 cores
Xeon Phi

16 LargeMem Nodes
1TB RAM
32 cores

2x Nvidia K20 GPU

	Parallel Visualization At TACC
	Visualization Problems
	Visualization Problems
	Visualization Servers: Maverick
	Visualization Servers: Stampede
	Parallel Visualization Software
	Interactive Remote Desktop
	Remote Serial Visualization
	Remote Parallel Visualization
	Parallel Session Settings
	Running Paraview In Parallel
	Running Visit In Parallel
	Data-Parallel Visualization Algorithms
	Data-Parallel Algorithms
	Data-Parallel Algorithms
	Parallel Rendering
	Parallel Data Formats
	Paraview XML Parallel Formats
	SILO Parallel Format
	Xdmf Parallel Format
	Data Location
	Post-Processing
	Postprocessing On HPC Systems� and Longhorn
	Postprocessing On Stampede
	Huge Data: Co- and In-Situ Processing
	Huge Data: Co- and In-Situ Processing
	Co-Processing
	In-Situ Processing
	Co- and In-Situ Processing
	Co- and In-Situ Status
	Summary
	Longhorn Architecture
	Stampede Architecture

